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Section 1

Introduction
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Lipschitz equivalence (X ' Y )

metric space X metric space Y

f bijection

C−1 ≤
dY
(
f(x1), f(x2)

)
dX(x1, x2)

≤ C

dimHX = dimH Y : same size

X ' Y : same geometric structure

Falconer & Marsh (1992)

Fractal geometry is sometimes thought of as the study of equivalence
classes of sets under bi-Lipschitz mappings.
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Lipschitz equivalence of fractals

There is little known about the Lipschitz equivalence of fractals, even
for self similar sets in Euclidean spaces.

Lipschitz equivalence =⇒ equal dimension + topology equivalence.
But the inverse is false.

Basic Problem

{
equal dimension

topology equivalence
+ what conditions =⇒ Lipschitz equivalence ?
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An example: equal dimension + topology equivalence
6⇒ Lipschitz equivalence

Example (Falconer & Marsh, 1992)

Let C be the middle-third Cantor set and E the self-similar set satisfying

E = βE ∪
(
βE + (1− β)/2

)
∪
(
βE + (1− β)

)
,

where β = 3− log 3/ log 2. Then

dimHE = dimHC, but E 6' C.

1/3 1/3 β β β
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Falconer & Marsh’s Theorems

Theorem (Falconer & Marsh, 1989)

Quasi-circles C1 and C2 are Lipschitz equivalent if and only if
dimHC1 = dimHC2.

Theorem (Falconer & Marsh, 1992)

Suppose IFS S, T both satisfy the SSC and r1, . . . , rn are ratios of S,
t1, . . . , tm are ratios of T . If ES ' ET , then

1 dimHES = dimHET = s;

2 Q∗ log r1 + · · ·+Q∗ log rn = Q∗ log t1 + · · ·+Q∗ log tm;

3 Q(rs1, . . . , r
s
n) = Q(ts1, . . . , t

s
m).

Here Q∗ = nonnegative rational numbers.

Falconer & Marsh’s work provided the basic idea to study the
problem.

Their result implied that Lipschitz equivalence of self-similar sets is
heavily dependent on the algebraic properties of ratios.
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Developments: strong separation condition
Known algebraic properties of ratios determine Lipschitz equivalence.
Unknown exactly what algebraic properties affect Lipschitz equivalence.

Necessary condition

Cooper & Pignataro, 1988 measure linear.

Falconer & Marsh, 1992 two necessary conditions, measure linear in
general case.

Rao, Ruan & Wang, 2012 another necessary conditions, resolve some
special cases.

Necessary and sufficient condition

Xi, 2010 graph-directed system.

Llorente & Mattila, 2010 Bi-Lipschitz embedding.

Deng, Wen, Xiong & Xi, 2011 Bi-Lipschitz embedding.

But none of above necessary and sufficient conditions are based on the
algebraic properties of ratios and so it is difficult to verify them.
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Developments: open set condition & totally disconnected
{1, 3, 5}-{1, 4, 5} problem

Algebraic properties & geometric structure affect Lipschitz equivalence.

{1, 3, 5}-{1, 4, 5} problem, by David & Semmes

Rao, Ruan & Xi, 2006 E1,3,5 ' E1,4,5, graph-directed system.

r1 r2 r3 r1 r2 r3

Different radios

Xi & Ruan, 2007 equivalence if and only if log r1/ log r3 ∈ Q.
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Developments: open set condition & totally disconnected
Generated {1, 3, 5}-{1, 4, 5} problem

Xi & Xiong, 2010 higher dimensional Euclidean spaces.

			

			 			 			 			

Xiong & Xi, 2012 rotation.
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Section 2

Lipschitz equivalence class and ideal class
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IFS families TDC ∩OSCE
1 and TDC ∩OSCE

1 (p, r)

Consider similar IFS S satisfying the following four conditions:

1 TDC: the self-similar set is totally disconnected;

2 OSC: the open set condition;

3 defined on the Euclidean spaces.

4 commensurable: the ratios r1, . . . , rn of S satisfy log ri/ log rj ∈ Q.

Let TDC ∩OSCE
1 denotes the set of all such IFSs.

For IFS S ∈ TDC ∩OSCE
1 , let rS ∈ (0, 1) determined by

Z log rS = Z log r1 + · · ·+ Z log rn.

Write pS = rsS , where s is the dimension of the self-similar set generated
by S. Define TDC ∩OSCE

1 (p, r) = {S ∈ TDC ∩OSCE
1 : pS = p, rS = r}.
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Main discovery

Theorem (Xi & Xiong, arXiv:1304.0103)

Assume TDC ∩OSCE
1 (p, r) 6= ∅. There is a one-to-one correspondence

between the Lipschitz equivalence classes of TDC ∩OSCE
1 (p, r) and the

ideal classes of Z[p].

This result connects a geometrical object (Lipschitz equivalence
classes) with a algebraic object (ideal class).

This result reveals an interesting relationship between Lipschitz
equivalence problem in fractal geometry and the Gauss class number
problem in algebraic number theory.
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Ideal

I ⊂ R(+, ·) is a ideal if
(i) (I,+) is a group; (ii) a · I ⊂ I for all a ∈ R.

An ideal I ⊂ R is called principal if I = aR for some a ∈ R.

A ring R is called a principal ideal domain if all the ideals are principal.

Example

Every ideal of Z has the form n ·Z for some n ∈ Z. And so Z is a principal
ideal domain.

Example

Ideal (2,
√
10) ⊂ Z[

√
10] is not a principal ideal. And so Z[

√
10] is not a

principal ideal domain.
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Ideal class and class number

I, J : two ideals of R.

I ∼ J : if aI = bJ for some a, b ∈ R;

ideal classes: the corresponding equivalence classes;

class number : the cardinal number of ideal classes.

Example

All principal ideals are equivalent. And so

R is a principal ideal domain ⇐⇒ R has class number 1.

Example

The class number of Z[
√
10] is 2. In fact, for every ideal I of Z[

√
10],

either I ∼ (2,
√
10) or I is a principal ideal.

Jun Jie Miao (ECNU, China) On the Lipschitz Equivalence of Fractals 14 / 30



The ideal of IFS

Let IFS S ∈ TDC∩OSCE
1 , ES the self-similar set of S, s = dimHES

and µS = Hs|ES/Hs(ES).

Definition (interior separated set)

A compact set F ⊂ ES is called an interior separated set if

(separated) F and ES \ F are both compact;

(interior) ∃ open set O satisfying the OSC and F ⊂ O.

We remark that µS(F ) ∈ Z[pS ] for every interior separated set F .

Definition (ideal of IFS)

IS , the ideal of IFS S, is defined to be the ideal of Z[pS ] generated by{
µS(F ) : F is an interior separated set of ES

}
.
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Examples of ideal of IFS (I)

Example

If S satisfies the SSC, then IS = Z[pS ] is a principal ideal.

O a δ-neighborhood of ES with δ � 1

=⇒ O satisfies the OSC

=⇒ ES ⊂ O is an interior separated set

=⇒ 1 = µS(ES) ∈ IS =⇒ IS = Z[pS ]

Jun Jie Miao (ECNU, China) On the Lipschitz Equivalence of Fractals 16 / 30



Examples of ideal of IFS (I)

Example

If S satisfies the SSC, then IS = Z[pS ] is a principal ideal.

O a δ-neighborhood of ES with δ � 1

=⇒ O satisfies the OSC

=⇒ ES ⊂ O is an interior separated set

=⇒ 1 = µS(ES) ∈ IS =⇒ IS = Z[pS ]

Jun Jie Miao (ECNU, China) On the Lipschitz Equivalence of Fractals 16 / 30



Examples of ideal of IFS (II)
Example

Let S = {S1, . . . , S7} ∈ TDC ∩OSCE
1 , r = 1/10 and

S1 : x 7→ rx, S2 : x 7→ −r2x+ 3r, S3 : x 7→ rx+ 3r,

S4 : x 7→ −rx+ 6r, S5 : x 7→ rx+ 6r, S6 : x 7→ −rx+ 9r, S7 : x 7→ rx+ 9r.

Then pS =
√
10− 3 is a root of p2 + 6p = 1 and

IS = (2, pS + 1) = (2,
√
10) is not a principal ideal.

r r2

			

r r

			

r r

			

r

r2

			

r2 r2

			

r2 r2

			

r3 r2

			

r2 r3

			

r2 r2

			

r2 r2

			

r2

︷ ︸︸ ︷



Sufficient and necessary condition for Lipschitz equivalence

Theorem (Xi & Xiong, arXiv:1304.0103)

Suppose that S, T ∈ TDC ∩OSCE
1 , then ES ' ET if and only if

(i) dimHES = dimHET ;

(ii) log rS/ log rT ∈ Q;

(iii) IS = aIT for some a ∈ R.

In the theorem, the two IFSs S and T are allowed to be defined on
Euclidean spaces of different dimensions.

e.g., if ES ⊂ R1 and ET ⊂ R2, we still have

ES ' ET ⇐⇒ the above three conditions.
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Lipschitz equivalence and ideal equivalence

For S, T ∈ TDC ∩OSCE
1 (p, r), we have

dimHES = dimHET = log p/ log r, Z[pS ] = Z[pT ] = Z[p].

Theorem (Xi & Xiong, arXiv:1304.0103)

Suppose that S, T ∈ TDC ∩OSCE
1 (p, r), then ES ' ET if and only if

IS ∼ IT .

That means each Lipschitz equivalence class of TDC ∩OSCE
1 (p, r)

corresponds to an ideal class of Z[p].

Corollary (Fact: there are only finitely many ideal classes of Z[p])
There are only finitely many Lipschitz equivalence classes of
TDC ∩OSCE

1 (p, r).
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One-to-one correspondence between the two equivalence
classes

Theorem (Xi & Xiong, arXiv:1304.0103)

Assume TDC ∩OSCE
1 (p, r) 6= ∅. There is a one-to-one correspondence

between the Lipschitz equivalence classes of TDC ∩OSCE
1 (p, r) and the

ideal classes of Z[p].

In fact, for each ideal I of Z[p], there is an IFS
S ∈ TDC ∩OSCE

1 (p, r) with IS = I.

Question

How many Lipschitz equivalent classes does TDC ∩OSCE
1 (p, r) contain?

This is a geometric version of Gauss class number problems.
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Gauss Class number problems

h(D): the class number of the ring of algebraic integers of Q(
√
D), where

D is square-free.

Gauss Class number problems in Disquisitiones Arithmeticae (1801):

h(D)→∞ as D → −∞.

Proved by Hecke, Deuring, Heilbronn, 1934.

If D < 0 and h(D) = 1, then

D ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

Proved by Heegner, Baker, Stark, 1966.

There are infinitely many D > 0 such that h(D) = 1.
Open.
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Lipschitz class number one

Z[p] is a principal ideal domain⇐⇒ Z[p] with class number one

⇐⇒ TDC ∩OSCE
1 (p, r) with Lipschitz class number one

Z[p] is a principal ideal domain when p = 1/N,
√
2− 1, (

√
3− 1)/2, . . . .

Theorem (Xi & Xiong, arXiv:1304.0103)

Suppose that S = {S1, . . . , SN}, T = {T1, . . . , TN} and

S, T satisfy the OSC;

all the ratios of Si and Tj equal to r;

ES ⊂ Rd, ET ⊂ Rd′ are totally disconnected.

Then ES ' ET .

Proof.

S, T ∈ TDC ∩OSCE
1 (1/N, r) and Z[1/N ] is a principal ideal domain.
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Principal ideal class

Principal ideal implies simple geometric structure.

Write PI =
{
S ∈ TDC ∩OSCE

1 : IS is principal
}

.

Theorem (Xi & Xiong, arXiv:1304.0103)

Suppose that S, T ∈ PI, then ES ' ET if and only if

(i) dimHES = dimHET ;

(ii) log rS/ log rT ∈ Q;

(iii) Z[pS ] = Z[pT ]. Go to main theorem

Proof.

IS = aIT =⇒ Z[pS ] = bZ[pT ] =⇒ b ∈ Z[pS ]
=⇒ bZ[pS ] ⊂ Z[pS ] = bZ[pT ] =⇒ Z[pS ] ⊂ Z[pT ].
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SSC corresponds to the principal ideal class

Theorem (Xi & Xiong, arXiv:1304.0103)

Suppose that S, T both satisfy the SSC and the ratios of them are both
commensurable. Then ES ' ET if and only if

1 dimHES = dimHET ;
2 log rS/ log rT ∈ Q;
3 Z[pS ] = Z[pT ]. (Ring condition) Go to theorem of PI

Impressive development after Falconer and Marsh’s work

Necessary conditions in non-commensurable case (Falconer & Marsh)

Suppose that S, T both satisfy the SSC and r1, . . . , rn are ratios of S,
t1, . . . , tm are ratios of T . If ES ' ET , then

1 dimHES = dimHET = s;
2 Q∗ log r1 + · · ·+Q∗ log rn = Q∗ log t1 + · · ·+Q∗ log tm;
3 Q(rs1, . . . , r

s
n) = Q(ts1, . . . , t

s
m). (Field condition)
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Example: the ring condition stronger than the field
condition

Example (assume S, T satisfy the SSC)

Ratios of S: 3−1, 3−1, 3−2 and 3−2;

pS = (
√
3− 1)/2: the positive solution of 2p2S + 2pS = 1;

Ratios of T : 3−3, . . . , 3−3︸ ︷︷ ︸
20

, 3−6, . . . , 3−6︸ ︷︷ ︸
8

.

pT = (3
√
3− 5)/4: the positive solution of 8p2T + 20pT = 1;

Then log pS/ log pT = 1
3 ∈ Q,

Q(pS) = Q(pT ) = Q(
√
3), but Z[pS ] = Z[

√
3,

1

2
] 6= Z[pT ] = Z[3

√
3,

1

2
].
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SSC without commensurable condition

Example

Ratios of E1 1/9 and 4/9

Ratios of E2 1/81, 1/81, 1/81, 1/81 and 4/9

. . . . . .

Ratios of En 9−n, . . . , 9−n︸ ︷︷ ︸
3n−1

and 4/9

. . . . . .

1 dimHEn = 1/2;

2 Q∗ log 9−n +Q∗ log(4/9) = Q∗ log 9 +Q∗ log(4/9);
3 Z[3−n, 2/3] = Z[1/3];

But we can show that Em 6' En for m 6= n.

Question

What is the sufficient and necessary condition for the Lipschitz equivalence
for self-similar sets satisfying the SSC?
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Section 3

Lipschitz equivalence of self-affine sets
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McMullen Bedford Carpet

r : Number of chosen rectangles

dimH E = log
m−1∑
j=0

r
logm/ logn
j

/
logm.

We use R(n,m, r, r0, · · · , rm−1) to denote the collection of all such
McMullen sets, i.e., with the number of rectangles in each line fixed.
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Dust-like set

Let E ∈ R(n,m, r, r0, · · · , rm−1). We call the McMullen set E dust-like,
if Si(E) ∩ Sj(E) = ∅ for all i 6= j ∈ {0, · · · , r − 1}. We denote by
DR(n,m, r, r0, · · · , rm−1) the collection of all dust-like McMullen sets in

Theorem (Li, Li& Miao)

Let E and F be two McMullen sets in DR(n,m, r, r0, · · · , rm−1). Then
the sets E and F are Lipschitz equivalent.
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HBSC set

We say that the McMullen set E satisfies horizontal block separation
condition (HBSC) if one of the following properties holds:
(I) Let J 6= J ′ ∈ {Si(Q) : i = 0, · · · , r − 1} . Then J and J ′ are disjoint;
(II) Let J 6= J ′ ∈ {Si(Q), Si(Q) + (1, 0) : i = 0, · · · , r − 1} such that
J ∩ J ′ 6= ∅. Then J and J ′ lie in the same horizontal line.
We write SR(n,m, r, r0, · · · , rm−1) for the collection of all McMullen sets
in R(n,m, r, r0, · · · , rm−1) satisfying HBSC.
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