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Introduction: singular value function

• Let T : Rd → Rd be a non-singular contracting linear map with
singular values

0 < σd ≤ σd−1 ≤ · · · ≤ σ2 ≤ σ1 = ‖T‖.

• Define the singular value function by

Φs(T) =

{
σ1σ2 · · ·σm−1σ

s−m+1
m , if 0 ≤ s ≤ d,

σ1σ2 · · ·σd−1σ
s−d+1
d , if s > d.

Here m is the integer such that m− 1 ≤ s < m.
• Φs is submultiplicative, i.e. Φs(TS) ≤ Φs(T)Φs(S)
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• Φs is not multiplicative

• There are different approaches to overcoming problems caused by
this, for example, the invariant cone condition (Feng and
Shmerkin), irreducibility (Feng), non-existence of parallelly
mapped vectors and a general condition introduced by Falconer
and Sloan.
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Introduction: self-affine sets

• Let fi(x) = Ti(x) + ai be affine contractions (i = 1, . . . ,M). Here
Ti : Rd → Rd is a bijective linear contraction.

• Let F =
⋃M

i=1 fi(F) be the attractor.
• Define the pressure function by

p(s) = lim
n→∞

1
n log

∑
(i1,...,in)∈{1,...,M}n

Φs(Ti1 ◦ · · · ◦ Tin).

• Let s0 be the unique zero of the pressure.

Theorem (Falconer 1988)
Assume that ‖Ti‖ < 1/3 for all i. Then for LMd-almost all a ∈ RMd

dimH Fa = dimP Fa = dimB Fa = min{d, s0}.

• Solomyak: 1/3 can be replaced by 1/2.
• Przytycki and Urbański: 1/2 is the best possible bound.
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Introduction: random self-affine sets

• Jordan, Pollicott and Simon (2007): a fixed affine IFS with a small
random perturbation in translations at each step of the
construction.

• Falconer and Miao (2007): random subsets of a fixed self-affine
IFS, at each step of the construction a random subfamily of the
original function system is chosen independently.

• In both cases there is total independence both is space, i.e.
between different nodes at a fixed construction level, and in scale
or time, i.e. once a node is chosen its descendants are chosen
independently of the previous history.

• Random affine code tree fractals have certain independence only
in time direction.
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Falconer-Sloan condition

Let A and B be d× d-matrices. Let v ∈ Rd such that |v| = 1 and
‖B‖ = |Bv|.

The norm ‖AB‖ is much smaller than ‖A‖‖B‖ if v is
mapped by B onto an eigenspace of A which corresponds to some
small eigenvalue of A.

Falconer-Sloan condition guarantees that this does not happen
simultaneously for all maps in the family.
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Let Λm the m-th exterior power of Rd with the convention Λ0 = R.

Let Λm
0 be the set of decomposable m-vectors, i.e.

Λm
0 = {v = v1 ∧ · · · ∧ vm | vi ∈ Rd}.

Define the inner product 〈· | ·〉 on Λm by the formula

〈v | w〉ω = v ∧ ∗w.

Here ω is the normalised volume form on Rd and ∗ : Λm → Λd−m is the
Hodge star operator.

Any linear map S : Rd → Rd induces a linear map S : Λm → Λm such
that S(v1 ∧ · · · ∧ vm) = Sv1 ∧ · · · ∧ Svm for all v1 ∧ · · · ∧ vm ∈ Λm

0 .
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Let {Si : Rd → Rd}i∈I be a family of linear maps.

Definition
Let m ∈ N with 0 ≤ m ≤ d. The family {Si}i∈I satisfies condition C(m) if
for all v,w ∈ Λm

0 \ {0} there is i ∈ I such that 〈Siv | w〉 6= 0.

Definition
Let 0 < s < d be non-integral and let m be the integer part of s. The
family {Si}i∈I satisfies condition C(s) if for all v,w ∈ Λm

0 \ {0} and
v ∧ v,w ∧ w ∈ Λm+1

0 \ {0} there is i ∈ I such that 〈Siv | w〉 6= 0 and
〈Si(v ∧ v) | w ∧ w〉 6= 0.
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Remark
(1) The family {Si}i∈I satisfies condition C(m) if and only if for all
v ∈ Λm

0 \ {0} the set {Siv | i ∈ I} spans Λm.

(2) There must be at least
(d

m

)
maps in the family {Si}i∈I for condition

C(m) to be satisfied.

Goal: to prove that for generic pairs (F,G) of linear maps the family of
compositions of F and G up to a certain level satisfies C(s) for all
0 ≤ s ≤ d.
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Genericity of Falconer-Sloan condition

• Let F : Rd → Rd be a linear map with d different real eigenvalues
{λ1, . . . , λd} such that for all k = 1, . . . , d

λi1 · · ·λik 6= λj1 · · ·λjk

for all pairs (i1, . . . , ik) 6= (j1, . . . , jk).

• Let {e1, . . . , ed} be the corresponding normalised eigenvectors.
• Let A be an invertible d× d-matrix and let {ẽ1, . . . , ẽd} be a basis of
Rd such that ẽi = Aei for all 1 ≤ i ≤ d.

• Define a linear map G : Rd → Rd such that Gẽj = tjẽj for all
1 ≤ j ≤ d where ti1 · · · tik 6= tj1 · · · tjk for all pairs
(i1, . . . , ik) 6= (j1, . . . , jk).

• Let Sk = {T1 ◦ · · · ◦ Tj | 1 ≤ j ≤ k and Ti ∈ {F,G} for all 1 ≤ i ≤ j}.
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• LetMd be the class of d× d -matrices whose all minors are
non-zero.

• Md ⊂ Rd2
is open and dense and has full Lebesgue measure.

Let n0 = max
0≤m≤d

(d
m

)
.

Theorem (Li, Stenflo, J2)
The family S2n2

0
satisfies C(m) and C(s) for all m = 1, . . . , d and

0 < s < d provided that A ∈Md.
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We identify the space of families F = {Si : Rd → Rd}k
i=1 of linear maps

with Rd2k and define

Sl(F) = {Si1 ◦ · · · ◦ Sij | 1 ≤ j ≤ l and Sim ∈ F for all 1 ≤ m ≤ j}.

Corollary (Li, Stenflo, J2)
The set

{F ∈ Rd2k | S2n2
0
(F) satisfies C(s) for all 0 ≤ s ≤ d}

is open, dense and has full Lebesgue measure.

Note that the upper bound for the number of iterates needed to satisfy
the condition C(s) is independent of the original family F .
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Affine code tree fractals

• Let Λ be an index set.

• Consider a family of iterated function systems
F = {Fλ = {fλ1 , . . . , fλMλ

} | λ ∈ Λ}where fλi (x) = Tλi (x) + aλi .
• Assume that

sup
λ∈Λ,i=1,...,Mλ

‖Tλi ‖ < 1 and M = sup
λ∈Λ

Mλ <∞.

• Let I = {1, . . . ,M} and consider a code tree function
ω :
⋃∞

k=0 Ik → Λ.
• Let Fωa be the attractor.
• The linear parts of a code tree fractal may depend on the

construction step.
• Examples: attractors of graph directed Markov systems generated

by affine maps, or more generally, sub-self-affine sets.
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Theorem (Koivusalo, Käenmäki, Stenflo, Suomala, J2)

Assuming that ‖Tλi ‖ ≤ σ <
1
2 for all λ ∈ Λ and i = 1, . . . ,Mλ, we have

for all ω
dimH Fωa = dω

for almost all a.

• Taking Φs as a premeasure in Carathéodory’s construction gives
Ms.

• Define dω = inf{s | Ms(Σω) = 0} = sup{s | Ms(Σω) =∞}.

Other statements in Falconer’s theorem are not necessarily valid:

• The pressure may not exist.
• The pressure may exist and have a unique zero s0 but dω 6= s0.
• It is possible that dimH Fωa 6= dimP Fωa 6= dimB Fωa .
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Random affine code tree fractals

• Define Ω̃ = (Ω,NN) where Ω is the space of code trees and NN is
the space of neck lists.

• Let Ξ : Ω̃→ Ω̃ be a shift determined in terms of neck levels.
• Let P be a probability measure on Ω̃.
• Random affine code tree fractals are locally random but globally

nearly homogeneous.

Theorem (Koivusalo, Käenmäki, Stenflo, Suomala, J2)
Assume that
• ‖Tλi ‖ ≤ σ < 1 and ‖(Tλi )−1‖ < L for all λ and i
• P ergodic and Ξ-invariant
•
∫

N1 dP <∞where N1 is the first neck level
Then P-almost surely the pressure pω̃ exists. Moreover, there exists a
unique s0 with pω̃(s0) = 0 P-almost surely.
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Theorem (Koivusalo, Käenmäki, Stenflo, Suomala, J2)
In addition to the assumptions of the previous theorem suppose that
(1) d = 2

(2) ‖Tλi ‖ ≤ σ <
1
2

(3) P(∃ v such that TiN1
(v) are parallel for all TiN1

) < 1.
(4) there is certain independence between different neck levels.

Then P-almost surely dimH Fa = dimP Fa = dimB Fa = min{s0, d} for
almost all a.

This result can be generalised (and the proof can be simplified) by
replacing (3) with a probabilistic version of the Falconer-Sloan
condition. In particular, (1) and (4) are not needed.
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Theorem (Li, Stenflo, J2)
Assume that
(1’) ‖Tλi ‖ ≤ σ <

1
2

(2’)
∫

Ω̃
N1(ω̃) dP(ω̃) <∞

(3’) for all 0 < s < d all compositions of the linear parts up to level N1
satisty condition C(s) with positive probability.

Then P-almost surely dimH Fa = dimP Fa = dimB Fa = min{s0, d} for
almost all a.

• The upper bound 1
2 is optimal.

• When d = 2 assumption (3) implies (3’).
• In general (3’) is weaker than (3).
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Happy birthday, Kenneth!
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