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Introduction: singular value function

e LetT:RY - Ribea non-singular contracting linear map with
singular values

0<o04<041< <0y <01 =]|T|.
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Introduction: singular value function

e LetT:RY > Rbea non-singular contracting linear map with
singular values
0<o4<o41<--<om<or=|T|.

e Define the singular value function by

s—d+1

(T) = 0102 o105, "L if0 < s < d,
0102+ 0410y , ifs>d.

Here m is the integer such that m —1 <s < m.
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Introduction: singular value function

e LetT:RY - Ribea non-singular contracting linear map with
singular values

0<o04<041< <0y <01 =]|T|.

e Define the singular value function by

s—d+1

(T) = 0102 o105, "L if0 < s < d,
0102+ 0410y , ifs>d.

Here m is the integer such that m —1 <s < m.
e &°is submultiplicative, i.e. ®°(TS) < ®°(T)P*(S)
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e @° is not multiplicative



e @° is not multiplicative

e There are different approaches to overcoming problems caused by
this, for example, the invariant cone condition (Feng and
Shmerkin), irreducibility (Feng), non-existence of parallelly
mapped vectors and a general condition introduced by Falconer
and Sloan.
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Introduction: self-affine sets

e Letfij(x) = Ti(x) + a; be affine contractions (i = 1, ..., M). Here
T; : RY — R? is a bijective linear contraction.
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Introduction: self-affine sets
e Letfij(x) = Ti(x) + a; be affine contractions (i = 1, ..., M). Here

T; : RY — R? is a bijective linear contraction.
o LetF = Uf\i 1fi(F) be the attractor.
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Introduction: self-affine sets

e Letfij(x) = Ti(x) + a; be affine contractions (i = 1,
T; : RY — R? is a bijective linear contraction.

o LetF = Ufﬁ 1fi(F) be the attractor.

¢ Define the pressure function by

p(s) = nango%log Z O (Ty, 0 -

(i1, oin) E{1,...,M}"
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Introduction: self-affine sets

e Letfij(x) = Ti(x) + a; be affine contractions (i = 1,
T; : RY — R? is a bijective linear contraction.

o LetF = Ufﬁ 1fi(F) be the attractor.

¢ Define the pressure function by

p(s) = nango%log Z O (Ty, 0 -

(i1, oin) E{1,...,M}"

e Let 59 be the unique zero of the pressure.
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Introduction: self-affine sets

e Letfi(x) = Ti(x) + a; be affine contractions (i = 1, ..., M). Here
T; : RY — R? is a bijective linear contraction.

o LetF = Uf\i 1fi(F) be the attractor.

¢ Define the pressure function by

po=limbls Y @ o)
(i1, in) €{1,...M}"

e Let 59 be the unique zero of the pressure.

Theorem (Falconer 1988)
Assume that || T;|| < 1/3 for all i. Then for £M?-almost all a € RM?

dimy F, = dimp F, = dimp F, = min{d, so}.
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Introduction: self-affine sets

Let fi(x) = Ti(x) + a; be affine contractions (i = 1, ..., M). Here
T; : RY — R? is a bijective linear contraction.

LetF = Uf\i 1fi(F) be the attractor.

Define the pressure function by

po=limbls Y @ o)
(i1, in) €{1,...M}"

Let sy be the unique zero of the pressure.

Theorem (Falconer 1988)
Assume that || T;|| < 1/3 for all i. Then for £M?-almost all a € RM?

dimy F, = dimp F, = dimp F, = min{d, so}.

e Solomyak: 1/3 can be replaced by 1/2.
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Introduction: self-affine sets

Let fi(x) = Ti(x) + a; be affine contractions (i = 1, ..., M). Here
T; : RY — R? is a bijective linear contraction.

LetF = Uf\i 1fi(F) be the attractor.

Define the pressure function by

po=limbls Y @ o)
(i1, in) €{1,...M}"

Let sy be the unique zero of the pressure.

Theorem (Falconer 1988)
Assume that || T;|| < 1/3 for all i. Then for £M?-almost all a € RM?

dimy F, = dimp F, = dimp F, = min{d, so}.

e Solomyak: 1/3 can be replaced by 1/2.
e Przytycki and Urbanski: 1/2 is the best possible bound.
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Introduction: random self-affine sets

e Jordan, Pollicott and Simon (2007): a fixed affine IFS with a small
random perturbation in translations at each step of the
construction.
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Introduction: random self-affine sets

e Jordan, Pollicott and Simon (2007): a fixed affine IFS with a small
random perturbation in translations at each step of the
construction.

e Falconer and Miao (2007): random subsets of a fixed self-affine
IES, at each step of the construction a random subfamily of the
original function system is chosen independently.
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Introduction: random self-affine sets

e Jordan, Pollicott and Simon (2007): a fixed affine IFS with a small
random perturbation in translations at each step of the
construction.

e Falconer and Miao (2007): random subsets of a fixed self-affine
IES, at each step of the construction a random subfamily of the
original function system is chosen independently.

e Inboth cases there is total independence both is space, i.e.
between different nodes at a fixed construction level, and in scale
or time, i.e. once a node is chosen its descendants are chosen
independently of the previous history.
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Introduction: random self-affine sets

e Jordan, Pollicott and Simon (2007): a fixed affine IFS with a small
random perturbation in translations at each step of the
construction.

e Falconer and Miao (2007): random subsets of a fixed self-affine
IES, at each step of the construction a random subfamily of the
original function system is chosen independently.

e Inboth cases there is total independence both is space, i.e.
between different nodes at a fixed construction level, and in scale
or time, i.e. once a node is chosen its descendants are chosen
independently of the previous history.

e Random affine code tree fractals have certain independence only
in time direction.
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Falconer-Sloan condition

Let A and B be d x d-matrices. Let v € R such that |v| = 1 and
IBI| = [Bol.
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Falconer-Sloan condition

Let A and B be d x d-matrices. Let v € R such that |v| = 1 and
||B|| = |Bv|. The norm ||AB|| is much smaller than ||A||||B|| if v is

mapped by B onto an eigenspace of A which corresponds to some
small eigenvalue of A.
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Falconer-Sloan condition

Let A and B be d x d-matrices. Let v € R such that |v| = 1 and
||B|| = |Bv|. The norm ||AB|| is much smaller than ||A||||B|| if v is

mapped by B onto an eigenspace of A which corresponds to some
small eigenvalue of A.

Falconer-Sloan condition guarantees that this does not happen
simultaneously for all maps in the family.

Maarit Jirvenpai Falconer-Sloan condition and random affine code tree fractals



Let A™ the m-th exterior power of R? with the convention A = R.
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Let A™ the m-th exterior power of R? with the convention A = R.
Let Af be the set of decomposable m-vectors, i.e.

6”2{V27)1/\"'/\Z)m|7)i€Rd}.
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Let A™ the m-th exterior power of R? with the convention A = R.
Let Af be the set of decomposable m-vectors, i.e.

6”2{V201/\"'Avm|viERd}.
Define the inner product (- | -) on A™ by the formula
(V]| W)w = v A*xw.

Here w is the normalised volume form on R and * : A™ — A% is the
Hodge star operator.
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Let A™ the m-th exterior power of R? with the convention A = R.
Let Af be the set of decomposable m-vectors, i.e.

6”2{V201/\"'Avm|viERd}.
Define the inner product (- | -) on A™ by the formula
(V]| W)w = v A*xw.

Here w is the normalised volume form on R and * : A™ — A% is the
Hodge star operator.

Any linear map S : R? — R? induces a linear map S : A" — A" such
that S(v1 A~ Avy) = Svr A--- ASoy forallvg A -+ Aoy € AJ.
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Let {S; : RY — R},¢; be a family of linear maps.
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Let {S; : RY — R},¢; be a family of linear maps.

Definition

Let m € Nwith 0 < m < d. The family {S;};; satisfies condition C(m) if
for all v,w € Aj \ {0} thereis i € I such that (S;v | w) # 0.
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Let {S; : RY — R},¢; be a family of linear maps.

Definition

Let m € Nwith 0 < m < d. The family {S;};; satisfies condition C(m) if
for all v,w € Aj \ {0} thereis i € I such that (S;v | w) # 0.

Definition

Let 0 < s < d be non-integral and let m be the integer part of s. The
family {S;} ¢ satisfies condition C(s) if for all v,w € Aj’ \ {0} and
VAU, WAW E Ag“rl \ {0} thereis i € I such that (S;v | w) # 0 and
(Si(vAD) | wAw) #0.
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Remark

(1) The family {S;};c; satisfies condition C(m) if and only if for all
v € AJ' \ {0} the set {S;v | i € I} spans A™.
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Remark

(1) The family {S;};c; satisfies condition C(m) if and only if for all

v € AJ' \ {0} the set {S;v | i € I} spans A™.

(2) There must be at least (%) maps in the family {S;};cs for condition
C(m) to be satisfied.
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Remark

(1) The family {S;};c; satisfies condition C(m) if and only if for all

v € AJ' \ {0} the set {S;v | i € I} spans A™.

(2) There must be at least (%) maps in the family {S;};cs for condition
C(m) to be satisfied.

Goal: to prove that for generic pairs (F, G) of linear maps the family of
compositions of F and G up to a certain level satisfies C(s) for all
0<s<d
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Genericity of Falconer-Sloan condition

o Let F: R? — RY be a linear map with d different real eigenvalues
{A\,..., \s} such thatforallk=1,...,d
Xy X E NN

k

for all pairs (iy,. .., %) # (j1,-- -, Jk)-
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Genericity of Falconer-Sloan condition

o Let F: R? — RY be a linear map with d different real eigenvalues
{A\,..., \s} such thatforallk=1,...,d
Xy X E NN

k

for all pairs (iy,. .., %) # (j1,-- -, Jk)-
e Let {e1,...,e;} be the corresponding normalised eigenvectors.
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Genericity of Falconer-Sloan condition

o Let F: R? — RY be a linear map with d different real eigenvalues
{A\,..., \s} such thatforallk=1,...,d

Xy X E NN

k

for all pairs (iy,. .., %) # (j1,-- -, Jk)-
e Let {e1,...,e;} be the corresponding normalised eigenvectors.

e Let A be an invertible d x d-matrix and let {e1, ... ,e;} be a basis of
RY such that é; = Ae; forall 1 < i < d.

Maarit Jirvenpai Falconer-Sloan condition and random affine code tree fractals



Genericity of Falconer-Sloan condition

o Let F: R? — RY be a linear map with d different real eigenvalues
{A\,..., \s} such thatforallk=1,...,d

Xy X E NN

k

for all pairs (iy,. .., %) # (j1,-- -, Jk)-
Let {e1,...,es} be the corresponding normalised eigenvectors.

Let A be an invertible d x d-matrix and let {e;,...,e;} be a basis of
RY such that é; = Ae; forall 1 < i < d.

Define a linear map G : R? — R9 such that Ge; = tje; for all
1<j<dwheret; ---t; # ti 1, for all pairs

(i1, yik) Z (s -y Jk)-
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Genericity of Falconer-Sloan condition

o Let F: R? — RY be a linear map with d different real eigenvalues
{A\,..., \s} such thatforallk=1,...,d

Xy X E NN

k

for all pairs (iy,. .., %) # (j1,-- -, Jk)-
Let {e1,...,es} be the corresponding normalised eigenvectors.

Let A be an invertible d x d-matrix and let {e;,...,e;} be a basis of
RY such that é; = Ae; forall 1 < i < d.

Define a linear map G : R? — R? such that Ge; = tje; for all
1<j<dwheret; ---t; #t; -t forall pairs

(i1, yik) Z (s -y Jk)-

Let Sy ={T10---oT;j|1<j<kandT; € {F,G}forall 1 <i<j}.
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e Let M, be the class of d x d -matrices whose all minors are
non-zero.
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e Let M, be the class of d x d -matrices whose all minors are
non-zero.

e MyCR%is open and dense and has full Lebesgue measure.
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e Let M, be the class of d x d -matrices whose all minors are
non-zero.

e MyCR%is open and dense and has full Lebesgue measure.

Let o = ma. (5
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e Let M, be the class of d x d -matrices whose all minors are
non-zero.

e MyCR%is open and dense and has full Lebesgue measure.
d
Letng = Orgn?gd (m)

Theorem (Li, Stenflo, J?)

The family San satisfies C(m) and C(s) forallm =1,...,d and
0 < s < d provided that A € M.
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We identify the space of families F = {S; : RY — Rd}i.‘zl of linear maps
with R¥* and define

Sl(f):{Silo---oSij|1§j§land5imE]-"foralllgmgj}.
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We identify the space of families F = {S; : R? — R?}X_, of linear maps
with R¥* and define

81(.7:):{Silo---oSij|1§j§land5imE]-"foralllgmgj}.

Corollary (Li, Stenflo, J?)
The set

{F e RY* | San (F) satisfies C(s) forall 0 <s < d}

is open, dense and has full Lebesgue measure.
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We identify the space of families F = {S; : R? — R?}X_, of linear maps
with R¥* and define

Si(F)={Syo--05;|1<j<landS§;, € Fforalll <m < j}.

Corollary (Li, Stenflo, J?)
The set

{F e RY* | San (F) satisfies C(s) forall 0 <s < d}

is open, dense and has full Lebesgue measure.

Note that the upper bound for the number of iterates needed to satisfy
the condition C(s) is independent of the original family F.
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Affine code tree fractals

e Let A be an index set.
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Affine code tree fractals
o Let A be an index set.

e Consider a family of iterated function systems
F={P={f,... 7f]\)/\1/\} | A € A} where fA (x) = T (x) +a}.
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Affine code tree fractals

e Let A be an index set.

e Consider a family of iterated function systems
F={P={f,... 7fA)/\IA} | A € A} where fA (x) = T (x) +a}.
e Assume that

sup ITA | < 1and M = sup My < oo.
AEA,i=1,.. .My AEA
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Affine code tree fractals

Let A be an index set.

Consider a family of iterated function systems
F={P={f,... 7fA)/\IA} | A € A} where fA (x) = T (x) +a}.
Assume that

sup ITA | < 1and M = sup My < oo.
AEA,i=1,.. .My AEA

LetI = {1,...,M} and consider a code tree function
w: U IF— A
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Affine code tree fractals

Let A be an index set.

Consider a family of iterated function systems
F={P={f,... 7fA)/\IA} | A € A} where fA (x) = T (x) +a}.
Assume that

sup ITA | < 1and M = sup My < oo.
AEA,i=1,.. .My AEA

LetI = {1,...,M} and consider a code tree function
w: U IF— A
Let F{ be the attractor.
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Affine code tree fractals

e Let A be an index set.

e Consider a family of iterated function systems
F={P={f,... 7fA)/\IA} | A € A} where fA (x) = T (x) +a}.
e Assume that

sup ITA | < 1and M = sup My < oo.
AEA,i=1,.. .My AEA

e LetI ={1,...,M} and consider a code tree function
w: U IF— A
e Let Fy be the attractor.

e The linear parts of a code tree fractal may depend on the
construction step.
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Affine code tree fractals

e Let A be an index set.

e Consider a family of iterated function systems
F={P={f,... 7f]\)/\1/\} | A € A} where fA (x) = T (x) +a}.

e Assume that

sup ITA | < 1and M = sup My < oo.
AEA,i=1,.. .My AEA

e LetI ={1,...,M} and consider a code tree function
w: U IF— A
e Let Fy be the attractor.

e The linear parts of a code tree fractal may depend on the
construction step.

e Examples: attractors of graph directed Markov systems generated
by affine maps, or more generally, sub-self-affine sets.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assuming that [|T}|| < o < } forall A € Aandi = 1,...,M,, we have
for all w
dimy Fy = d¥

for almost all a.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assuming that [|T}|| < o < } forall A € Aandi = 1,...,M,, we have
for all w
dimy Fy = d¥

for almost all a.

e Taking ®° as a premeasure in Carathéodory’s construction gives

M>.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assuming that [|T}|| < o < } forall A € Aandi = 1,...,M,, we have
for all w
dimy Fy = d¥

for almost all a.

e Taking ®° as a premeasure in Carathéodory’s construction gives
M.
e Define d* = inf{s | M*(3¥) = 0} = sup{s | M*(X¥) = oo}.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assuming that [|T}|| < o < } forall A € Aandi = 1,...,M,, we have
for all w
dimy Fy = d¥

for almost all a.

e Taking ®° as a premeasure in Carathéodory’s construction gives
M.
e Define d* = inf{s | M*(3¥) = 0} = sup{s | M*(X¥) = oo}.

Other statements in Falconer’s theorem are not necessarily valid:

¢ The pressure may not exist.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assuming that [|T}|| < o < } forall A € Aandi = 1,...,M,, we have
for all w
dimy Fy = d¥

for almost all a.

e Taking ®° as a premeasure in Carathéodory’s construction gives
M.
e Define d* = inf{s | M*(3¥) = 0} = sup{s | M*(X¥) = oo}.

Other statements in Falconer’s theorem are not necessarily valid:

¢ The pressure may not exist.

e The pressure may exist and have a unique zero sp but 4 # s.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assuming that [|T}|| < o < } forall A € Aandi = 1,...,M,, we have
for all w
dimy Fy = d¥

for almost all a.

e Taking ®° as a premeasure in Carathéodory’s construction gives
M.
e Define d* = inf{s | M*(3¥) = 0} = sup{s | M*(X¥) = oo}.

Other statements in Falconer’s theorem are not necessarily valid:

¢ The pressure may not exist.
e The pressure may exist and have a unique zero sp but 4 # s.
e Itis possible that dimy Fy # dimp F # dimp FY.
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.
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Random affine code tree fractals
e Define Q = (Q,NY) where Q is the space of code trees and N is

the space of neck lists.

e Let = : Q — Q be a shift determined in terms of neck levels.
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.

¢ Random affine code tree fractals are locally random but globally
nearly homogeneous.
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.

¢ Random affine code tree fractals are locally random but globally
nearly homogeneous.

Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assume that
o [T} <o <land|(T})! <Lforall Aandi
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.

¢ Random affine code tree fractals are locally random but globally
nearly homogeneous.

Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

Assume that
o [T} <o <land|(T})! <Lforall Aandi

e P ergodic and Z-invariant
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.

¢ Random affine code tree fractals are locally random but globally
nearly homogeneous.

Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)
Assume that

o [T} <o <land|(T})! <Lforall Aandi

e P ergodic and Z-invariant

e [ N;1dP < co where Nj is the first neck level
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.

¢ Random affine code tree fractals are locally random but globally
nearly homogeneous.

Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)
Assume that

o [T} <o <land|(T})! <Lforall Aandi

e P ergodic and Z-invariant

e [ N;1dP < co where Nj is the first neck level
Then P-almost surely the pressure p* exists.
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Random affine code tree fractals

e Define Q = (Q,NY) where Q is the space of code trees and N is
the space of neck lists.

o Let = : Q — Q be a shift determined in terms of neck levels.
e Let P be a probability measure on Q.

¢ Random affine code tree fractals are locally random but globally
nearly homogeneous.

Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)
Assume that

o [T} <o <land|(T})! <Lforall Aandi

e P ergodic and Z-invariant

e [ N;1dP < co where Nj is the first neck level
Then P-almost surely the pressure p® exists. Moreover, there exists a
unique sp with p“(sp) = 0 P-almost surely.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

In addition to the assumptions of the previous theorem suppose that
(1) d=2

Maarit Jirvenpai Falconer-Sloan condition and random affine code tree fractals



Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

In addition to the assumptions of the previous theorem suppose that
1) d=2
@ T} <o <3
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

In addition to the assumptions of the previous theorem suppose that
1) d=2
@ T} <o <3
(3) P(3v such that Tj (v) are parallel for all Ty, ) <1.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)

In addition to the assumptions of the previous theorem suppose that
1) d=2
@ T} <0<}
(3) P(3v such that Tj (v) are parallel for all Ty, ) <1.

(4) there is certain independence between different neck levels.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)
In addition to the assumptions of the previous theorem suppose that
(1) d=2
@ T} <0<}
(3) P(3v such that Tj (v) are parallel for all Ty, ) <1.
(4) there is certain independence between different neck levels.

Then P-almost surely dimy F, = dimp F, = dimg F, = min{sy,d} for
almost all a.
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Theorem (Koivusalo, Kienmiki, Stenflo, Suomala, J?)
In addition to the assumptions of the previous theorem suppose that
1) d=2
@ T} <0<}
(3) P(3v such that Tj (v) are parallel for all Ty, ) <1.
(4) there is certain independence between different neck levels.
Then P-almost surely dimy F, = dimp F, = dimg F, = min{sy,d} for
almost all a.

This result can be generalised (and the proof can be simplified) by
replacing (3) with a probabilistic version of the Falconer-Sloan
condition. In particular, (1) and (4) are not needed.
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Theorem (Li, Stenflo, J?)
Assume that
@) TN <o <3
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Theorem (Li, Stenflo, J?)
Assume that

@) T <o<3

) [5N1(@)dP(@) < oo

in condition and random affine code tree fractals



Theorem (Li, Stenflo, J?)

Assume that

@) T <o <}

(2) [5N1(©)dP(@) < oo

(3") forall 0 < s < d all compositions of the linear parts up to level N;
satisty condition C(s) with positive probability.
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Theorem (Li, Stenflo, J?)

Assume that

@) T} <o<}

(2) [5N1(©)dP(@) < oo

(3") forall 0 < s < d all compositions of the linear parts up to level N;
satisty condition C(s) with positive probability.

Then P-almost surely dimy F, = dimp F, = dimg F, = min{sy,d} for

almost all a.
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Theorem (Li, Stenflo, J?)

Assume that

@) T} <o<}

(2) [5N1(©)dP(@) < oo

(3") forall 0 < s < d all compositions of the linear parts up to level N;
satisty condition C(s) with positive probability.

Then P-almost surely dimy F, = dimp F, = dimg F, = min{sy,d} for

almost all a.

e The upper bound 1 is optimal.
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Theorem (Li, Stenflo, J?)

Assume that

@) T} <o<}

(2) [5N1(©)dP(@) < oo

(3") forall 0 < s < d all compositions of the linear parts up to level N;
satisty condition C(s) with positive probability.

Then P-almost surely dimy F, = dimp F, = dimg F, = min{sy,d} for

almost all a.

e The upper bound 1 is optimal.
e When d = 2 assumption (3) implies (3").
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Theorem (Li, Stenflo, J?)

Assume that

@) T} <o<}

(2) [5N1(©)dP(@) < oo

(3") forall 0 < s < d all compositions of the linear parts up to level N;
satisty condition C(s) with positive probability.

Then P-almost surely dimy F, = dimp F, = dimg F, = min{sy,d} for

almost all a.

The upper bound 1 is optimal.

When d = 2 assumption (3) implies (3”).

In general (3’) is weaker than (3).
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Happy birthday, Kenneth!
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