
Multistable Lévy motions and their continuous
approximations

Xiequan Fan

joint work with Jacques Lévy Véhel

Regularity Team, INRIA and MAS Laboratory, École Centrale Paris

Conference in honour of K. Falconer’s 60th birthday

INRIA, Paris, 12-14 May 2014



Outline

My presentation includes 4 parts:

1 Functional central limit theorem for multistable Lévy motions

2 Stochastic Hölder continuity and strong localisability

3 Continuous approximation of MsLM

4 Integrals of multistable Lévy measure
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Functional central limit theorem for multistable Lévy motions

Definition of Lévy Motions

Definition. A stochastic process {L(t), t ≥ 0} is called (standard)
�−stable Lévy motion if the following three conditions hold:
1) L(0) = 0 a.s.;
2) L has independent increments;
3) L(t)− L(s) ∼ S�((t − s)1/�, �,0) for any 0 ≤ s < t < ∞ and for
some 0 < � ≤ 2,−1 ≤ � ≤ 1, where S�(�, �,0) stands for a stable
random variable with index of stability �, scale parameter � and
skewness parameter �.
3′) L has stationary increments;
3′′) For any " > 0 and t ≥ 0 it holds

lim
h→0

ℙ(∣L(t + h)− L(t)∣ ≥ ") = 0.
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Functional central limit theorem for multistable Lévy motions Why introduce Multistable Lévy Motions?

Why introduce Multistable Lévy Motions?

Since �−stable Lévy motions have stationary increments and constant
stability index �, they cannot be used for describing some real-world
phenomena, such as financial records, internet traffic, noise on
telephone lines and atmospheric noise. In these real-world
phenomena, the local regularity and the local stability levels may vary
with time. Thus it is natural to set up a class of processes such that
their local regularity and local stability level vary with a parameter t .
Such processes are useful both theoretically and in practice.
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Functional central limit theorem for multistable Lévy motions Why introduce Multistable Lévy Motions?

An example of a process having varying stability index, called
multistable processes, was introduced in Falconer and Lévy Véhel
(2009).

One says that {X (t), t ∈ ℝ} is h−localisable at u ∈ ℝ,h > 0, if there
exists a non-trivial process X ′

u such that

lim
r↘0

X (u + rt)− X (u)
rh = X ′

u(t),

where convergence is in finite dimensional distributions.

Definition. A stochastic process {X (t), t ∈ ℝ} is called multistable if
for almost all u, X is localisable at u with X ′

u an �−stable process for
some � = �(u), where 0 < �(u) ≤ 2.
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Functional central limit theorem for multistable Lévy motions Why introduce Multistable Lévy Motions?

Let D[0,1] be the set of “càdlàg” functions on [0,1] endowed with the
Skorohod metric dS; see Billingsley (1968).

One says that X is h−strongly localisable at u,h > 0, with strong local
form X ′

u, if X and X ′
u have versions in D[0,1] and the convergence

lim
r↘0

X (u + rt)− X (u)
rh = X ′

u(t)

is in distribution with respect to dS; see Falconer and Lévy Véhel
(2009).
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Functional central limit theorem for multistable Lévy motions

Constructions of multistable processes

After the work of Falconer and Lévy Véhel, some constructions of
multistable processes have been established.

Poisson representation:

Falconer and Lévy Véhel (2009)

Ferguson-Klass-LePage series representation:

Le Guével and Lévy Véhel (2012,2013)

Poisson + FKL series representations:

Le Guével, Lévy Véhel and Liu (2013)

Multistable measure defined by characteristic function:

Falconer and Liu (2012)

Certain properties of multistable processes are investigated in those
papers.
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

Falconer and Liu (2012) proved that, for all (�1, ..., �d ) ∈ ℝ
d ,

E exp
{

i
(

d
∑

j=1

�j

∫

fj(x)M(dx)
)

}

= exp
{

−

∫

∣

∣

∣

d
∑

j=1

�j fj(x)
∣

∣

∣

�(x)
dx

}

(1.1)

defines a consistent probability distribution on the functions fj of

ℱa,b =

{

f :
∫ ∞

−∞
∣f (x)∣adx ,

∫ ∞

−∞
∣f (x)∣bdx < ∞

}

.

Moreover, the integral
∫

f (x)M(dx) is well-defined, and the integrals of
functions with disjoint supports are independent. One calls M the
multistable Lévy measure.
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

In particular, if
(

�(x) − �(x + t)
)

ln t → 0 uniformly for all x in finite

interval as t ↘ 0, then the integral L�(u)(u) =
∫

1[0,u](x)M(dx) defines
a symmetric multistable Lévy motion (MsLM) on the positive half-line.

The aim of this presentation:
We give a functional central limit theorem for symmetric MsLM. Our
theorem is based on weighted sums of independent random variables,
which is different from the previous constructions. Then we show that
MsLM are stochastic Hölder continuous and strongly localisable.
Moreover, a continuous approximation of MsLM and a new
representation for the integrals of multistable Lévy measure are
established.
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

We give a functional central limit theorem for symmetric MsLM.

Theorem 1

Let �(u) ∈ D[0,1] ranging in [a,b] ⊂ (0,2]. Assume that
(

X ( k
2n )

)

n∈ℕ, k=1,...,2n is a family of independent random variables with

X ( k
2n ) ∼ S�( k

2n )
(1,0,0). Then

L�(u)(u) = lim
n→∞

⌊2nu⌋
∑

k=1

( 1
2n

)1/�( k
2n )

X
( k

2n

)

, u ∈ [0,1], (1.2)

converges in distribution with respect to dS. Its joint characteristic
function is given as follows: for all �j ∈ ℝ and uj ∈ [0,1], j = 1, ...,d,

E exp
{

i
d
∑

j=1

�jL�(uj )(uj)

}

= exp
{

−

∫

∣

∣

∣

d
∑

j=1

�j1[0,uj ](s)
∣

∣

∣

�(s)
ds

}

. (1.3)
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

Remark 1
Notice that the summands of (1.2) verify:

( 1
2n

)1/�( ⌊2nu⌋
2n )

X
(⌊2nu⌋

2n

)

∼ S
�(

⌊2nu⌋
2n )

(( 1
2n

)1/�( ⌊2nu⌋
2n )

,0,0
)

. (1.4)

Since

lim
n→∞

�
(⌊2nu⌋

2n

)

= �(u),

equality (1.2) means that the increment at the point u of the process
L�(u)(u) behaves locally like an �(u)−stable random variable, but with
the stability index �(u) varying with u.
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

If the function � satisfies
(

�(u)− �(u + t)
)

ln t → 0, as t ↘ 0, (1.5)

uniformly for all u ∈ [0,1], then

Theorem 2 (Falconer and Liu (2012))

Assume condition (1.5). Then L�(u)(u) is an �(u)−multistable Lévy
motion, called independent increments multistable Lévy motion.

This means that the process L�(u)(u) is localisable at u to Lévy’s
process L�(u)(t) with stability index �(u), i.e.

lim
r↘0

L�(u+rt)(u + rt)− L�(u)(u)

r1/�(u)
= L�(u)(t)

in finite dimensional distributions.
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

Equivalent definition of symmetric �−stable Lévy motions L�(u):

Corollary 3
There is a sequence of i.i.d. symmetric �−stable random variables
(Yk )k∈ℕ with an unit scale parameter such that

L�(u) = lim
n→∞

⌊nu⌋
∑

k=1

1
n1/�

Yk , u ∈ [0,1], (1.6)

converges in distribution with respect to Skorohod metric dS.
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Functional central limit theorem for multistable Lévy motions Constructions of multistable processes

How to construct a MsLM on the whole line?

Let �(x), x ∈ ℝ, be a continuous function ranging in [a,b] ⊂ (0,2]. Set
�k (x) = �(x + k), x ∈ [0,1], for all k ≥ 0. For every �k (x), by
Theorem 2, we construct a MsLM:

L�k (x)(x) : [0,1] → ℝ.

Taking a sequence of independent processes L�k (x)(x), we can define
{L�(x)(x) : x ≥ 0} by gluing together the parts, more precisely by

L�(x)(x) = L�⌊x⌋(x−⌊x⌋)(x − ⌊x⌋) +
⌊x⌋−1
∑

k=0

L�k (1)(1), for all x ≥ 0.

Similarly, for x < 0, we can define L�(x)(x) = L�(x)(−x), since
�(x) = �(−x) is defined on [0,+∞).
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Stochastic Hölder continuity and strongly localisability

Definition. A random process X (t), t ∈ [0, 1], is called stochastic
Hölder continuous of exponent � ∈ (0,1], if it holds

lim
u→t

ℙ(∣X (u)− X (t)∣ ≥ C ∣u − t ∣�) = 0

for all t ∈ [0, 1] and a positive constant C.

It is obvious that if X (t) is stochastic Hölder continuous of exponent
�1 ∈ (0,1], then X (t) is stochastic Hölder continuous of exponent
�2 ∈ (0, �1].
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Stochastic Hölder continuity and strongly localisability

The following theorem shows that MsLM are stochastic Hölder
continuous.

Theorem 4
Let L�(u)(u) be defined by Theorem 1. Then for all u, r ∈ [0,1],u ∕= r , it
holds

ℙ(∣L�(r)(r)− L�(u)(u)∣ ≥ ∣r − u∣�) ≤ Ca,b ∣r − u∣1−�b, (2.7)

where Ca,b is a constant depending only on a and b, which implies that
L�(u)(u) is stochastic Hölder continuous of exponent

� ∈
(

0,min
{

1,
1
b

})

.
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Stochastic Hölder continuity and strongly localisability

The following theorem shows that MsLM are not only localisable but
also strongly localisable.

Theorem 5
Assume the condition of Theorem 2. Then L�(u)(u) is 1/�(x)−strongly
localisable at x with strong local form L�(x)(u), the �(x)−stable Lévy
motion.

This means

lim
r↘0

L�(x+rt)(x + rt)− L�(x)(x)

r1/�(x)
= L�(x)(t)

in distribution with respect to Skorohod metric dS.
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Continuous approximation of MsLM
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Continuous approximation of MsLM

Recall the definition of the “triangle” function:

'(t) =

⎧

⎨

⎩

2t for t ∈ [0,1/2)
2 − 2t for t ∈ [1/2,1]
0 otherwise.

Define 'jk (t) = '(2j t − k), for j = 0,1, ... and k = 0, ...,2j − 1, the
dilations and translations of '(t).
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Continuous approximation of MsLM

We first establish a continuous stable processes starting at 0.

Theorem 6
Assume the i.i.d. random variables (Zjk )j ,k follow a symmetric �−stable
law with the unit scale parameter. Then, for all d > 1/�, the process

X (t) =
∞
∑

j=0

2j−1
∑

k=0

2−jdZjk'jk (t), t ∈ [0,1],

is a continuous and symmetric �-stable process.
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Continuous approximation of MsLM Continuous approximation of stable processes

The scale parameter �(t) of the process X (t) has the following
estimation

'1/�(t) ≤ �(t) ≤
( 1

1 − 2−�d

)1/�
, t ∈ [0,1].

It is worth noting that when t = 0,1, we have �(t) = 0; while when
t ∕= 0,1, we have �(t) > 0. This observation will be useful to establish
a continuous approximation of MsLM.

The main idea to construct continuous approximation of MsLM is to
replace the stable random variables of Theorem 1 by the continuous
stable processes starting at 0.
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Continuous approximation of MsLM

We give a continuous approximation of MsLM.

Theorem 7
Assume that

(

X�( k
2n )

(t)
)

n∈ℕ, k=0,...,2n−1 is a family of independent and

continuous �( k
2n )−stable random processes. Assume X�( k

2n )
(0) = 0

and ��( k
2n )

(t) > 0 for all t ∈ (0,1) and all n ∈ ℕ, k = 0, ...,2n − 1, where

��( k
2n )

(t) is the scale parameter of X�( k
2n )

(t). Define

Sn(u) =
( 1

2n

)�(
⌊2nu⌋

2n ) 1

�
�( ⌊2nu⌋

2n )
( 1

2n )
X
�( ⌊2nu⌋

2n )

(

u −
⌊2nu⌋

2n

)

+

⌊2nu⌋−1
∑

k=0

( 1
2n

)�( k
2n ) 1

��( k
2n )

( 1
2n )

X�( k
2n )

( 1
2n

)

, u ∈ [0,1].

Then (Sn)n∈ℕ is a continuous approximation of MsLM, that is
limn→∞ Sn(u) = L�(u)(u) in distribution on D[0,1].
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Integrals of multistable Lévy measure
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Integrals of multistable Lévy measure

Integrals of multistable Lévy measure

Denote by

ℒ�(x)[0,1] =

{

f : ∣∣f ∣∣�(x) := inf
{

� > 0,
∫ 1

0
∣f (x)/�∣�(x)dx = 1

}

< ∞

}

.

Note that ∣∣ ⋅ ∣∣�(x) is a quasinorm. The following theorem gives a new
representation of integrals with respect to multistable Lévy measure.

Theorem 8

Assume that �(u) and
(

X ( k
2n )

)

n∈ℕ, k=1,...,2n are defined by Theorem 1.
Then, for any positive f ∈ ℒ�(x)[0,1], it holds

∫ 1

0
f (x)M(dx) = lim

n→∞

2n
∑

k=1

( 1
2n

)1/�( k
2n )

f
( k

2n

)

X
( k

2n

)

(4.8)

in distribution, where M is a multistable measure (Falconer and Liu [6]).

Xiequan Fan (Regularity Team) Multistable Lévy motions 26 / 31



Integrals of multistable Lévy measure Integrals of multistable Lévy measure

The last theorem relates the convergence of a sequence of multistable
integrals to the convergence of the sequence of integrands.

Theorem 9

Let Xj =
∫ 1

0 fj(x)M(dx), j = 1,2, ..., and X =
∫ 1

0 f (x)M(dx). Then

lim
j→∞

Xj = X

in distribution, if and only if

lim
j→∞

∣∣fj(x)− f (x)∣∣�(x) = 0.

This theorem shows that convergence of multistable integrals
coincides with convergence in quasinorm.
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Some work under construction

∙ Construct MsLM with stochastic stability levels
(For Gaussian processes, see Ayache and Taqqu (2005) for
Multifractional Brownian Motion with random exponent.)

∙ Construct self-stabilizing process
(It means the stability levels of the process are varying with the
process itself.)
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Happy birthday Kenneth!
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