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Singular values and subadditive pressure

Let {Ai}i∈I be a finite collection of n × n contracting non-singular
matrices.

Let 1 > α1(i) > . . . > αn(i) > 0 be the singular values of Ai for i ∈ I∗.

For s ∈ [0, n) the singular value function φs : I∗ → (0,∞) is defined by

φs(i) = α1(i)α2(i) · · · αm(i)αm+1(i)s−m

where m ∈ {0, . . . , n − 1} is the unique non-negative integer satisfying
m 6 s < m + 1.
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Singular values and subadditive pressure

The subadditive pressure P : [0, n)→ R is defined by

P(s) = lim
k→∞

1

k
log

∑
i∈Ik

φs(i).

Here the limit exists since the singular value function is submultiplicative
in i, i.e.

φs(i j) 6 φs(i)φs(j).

It is convenient to extend the domain of P to [0,∞) and so we let

P(s) = log
∑
i∈I

det(Ai )
s/n

for s > n.
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Basic properties of the pressure

It is straightforward to verify that the pressure is:

(1) continuous

(2) strictly decreasing and has a unique zero in [0,∞)

(3) convex on every open interval (m,m + 1) with m ∈ {0, . . . , n − 1}
and on (n,∞)

(4) semi-differentiable everywhere

(5) differentiable at all but at most countably many points
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Self-affine sets

To each of the matrices in our collection, associate a translation vector
ti ∈ Rn. The collection of maps {Ai + ti}i∈I is an iterated function
system and it is well-known that there is a unique non-empty compact
set F ⊂ Rn satisfying

F =
⋃
i∈I

(Ai + ti )(F ).

Since each of the defining maps is affine, the attractor is called a
self-affine set.
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Falconer’s Theorem

Theorem (Falconer ‘88, Solomyak ‘98)
Let s be the unique real number satisfying P(s) = 0. Then for all sets of
translations {ti}i∈I , we have

dimH F 6 dimBF 6 min
{
n, s
}
.

Assume in addition that the matrices all have Lipschitz constants strictly
less than 1/2. Then, for L|I|n-almost all (t1, . . . , tm) ∈ R|I|n, we have

dimH F = dimP F = dimB F = min
{
n, s
}
.

Kenneth’s initial proof from 1988 required that the Lipschitz constants
be strictly less than 1/3 but this was relaxed to 1/2 by Solomyak who
also noted that 1/2 is the optimal constant.
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Falconer’s Theorem

Figure : Three self-affine sets with the same linear part but different
translations. Falconer’s theorem implies that they all have the same
Hausdorff dimension, unless of course we have been very unlucky and
chosen some ‘exceptional parameters’.
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Falconer’s Theorem

This result has had a huge influence in fractal geometry since its
inception in 1988. Some specific directions people have examined include:

(1) Checkable conditions which guarantee the result holds.
(Hueter-Lalley ‘95, Falconer-Miao ‘07, Käenmäki-Shmerkin ‘09)

(2) Contexts in which one can remove the condition on the norms.
(Jordan-Pollicott-Simon ‘07, Jordan-Jurga ‘13)

(3) Exceptions to the theorem. (Lalley-Gatzouras ‘92, Feng-Wang ‘05,
Barański ‘07, Fraser ‘12)

(4) The size of the exceptional set. (Falconer-Miao ‘08)

(5) Regularity properties of the subadditive pressure. (Falconer-Sloan
‘09, Feng-Käenmäki ‘11, Feng-Shmerkin ‘13, Fraser ‘13)

(6) Nonlinear analogues. (Falconer ‘94, Manning-Simon ‘07, Barańy
‘09)
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Pressure in the conformal setting

One of the things that makes self-affine sets so difficult to study is that
affine maps are typically non-conformal - they contract by different
amounts in different directions. If one considers the conformal setting,
then the situation is simpler.

Let {Si}i∈I be a collection of conformal contractions on some open
domain in Rn. This time the unique non-empty compact set satisfying

F =
⋃
i∈I

Si (F )

is called a self-conformal set. This time define the pressure
P : [0,∞)→ R by

P(s) = lim
k→∞

1

k
log

∑
i∈Ik

Lip+(Si)
s .
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Pressure in the conformal setting

Theorem (Bowen ‘75, Ruelle ‘78)
The pressure is real analytic on (0,∞) and, writing s for the unique real
number satisfying P(s) = 0, we have

dimH F = dimBF 6 min
{
n, s
}
.

Assume in addition that the open set condition is satisfied. Then

dimH F = dimP F = dimB F = min
{
n, s
}
.
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Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure real analytic on (0,∞)?

NO!

It is easy to see that the pressure will typically have phase transitions at
the natural numbers 1, 2, . . . , n, due to the change in definition of the
singular value function.
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Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure real analytic on (0,∞) \ {1, 2, . . . , n}?

...I got interested in this question recently and, as far as I am aware the
answer was not known, or at least not written down. I initially guessed
that the answer was YES, but...

NO!

...examples to follow later.

Jonathan M. Fraser Subadditive pressure



Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure real analytic on (0,∞) \ {1, 2, . . . , n}?

...I got interested in this question recently and, as far as I am aware the
answer was not known, or at least not written down.

I initially guessed
that the answer was YES, but...

NO!

...examples to follow later.

Jonathan M. Fraser Subadditive pressure



Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure real analytic on (0,∞) \ {1, 2, . . . , n}?

...I got interested in this question recently and, as far as I am aware the
answer was not known, or at least not written down. I initially guessed
that the answer was YES, but...

NO!

...examples to follow later.

Jonathan M. Fraser Subadditive pressure



Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure real analytic on (0,∞) \ {1, 2, . . . , n}?

...I got interested in this question recently and, as far as I am aware the
answer was not known, or at least not written down. I initially guessed
that the answer was YES, but...

NO!

...examples to follow later.

Jonathan M. Fraser Subadditive pressure



Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure real analytic on (0,∞) \ {1, 2, . . . , n}?

...I got interested in this question recently and, as far as I am aware the
answer was not known, or at least not written down. I initially guessed
that the answer was YES, but...

NO!

...examples to follow later.

Jonathan M. Fraser Subadditive pressure



Analyticity of Falconer’s subadditive pressure

Question
Is Falconer’s subadditive pressure piecewise real analytic on (0,∞)?

As far as I know, this question is still open. However, I can prove . . .

Theorem (F ’13)
If the matrices {Ai}i∈I are simultaneously triangularisable, then the
pressure is piecewise real analytic.
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Reduction to diagonal matrices case

Theorem (Falconer-Miao ‘07)
If the matrices {Ai}i∈I are simultaneously triangularisable, then the
pressure is the same as if one took the same collection of matrices but
set all non-diagonal entries equal to zero.

Corollary
We only need to consider diagonal matrices!
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A simple form for the pressure

Let c1(i), c2(i), . . . , cn(i) be the diagonal entries of Ai .

Let Sn be the symmetric group on {1, . . . , n} .

For each σ ∈ Sn and s ∈ [0, n) define the σ-ordered singular value
function φsσ : I∗ → (0,∞) by

φsσ(i) = cσ(1)(i) cσ(2)(i) · · · cσ(m)(i) cσ(m+1)(i)
s−m

where m ∈ {0, . . . , n − 1} is the unique non-negative integer satisfying
m 6 s < m + 1.
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A simple form for the pressure

The key advantage of these ordered singular value functions is that they
are multiplicative in i instead of only submultiplicative, i.e.

φsσ(i j) = φsσ(i)φsσ(j)

for all i, j ∈ I∗ and σ ∈ Sn.

This allows us to define the associated pressure by means of a closed
form expression, without taking a limit. More precisely, we define the
σ-ordered pressure Pσ : [0, n)→ R by

Pσ(s) = log
∑
i∈I

φsσ(i)

...which is real analytic on (0,∞) \ {1, 2, . . . , n} for each σ.

Jonathan M. Fraser Subadditive pressure



A simple form for the pressure

The key advantage of these ordered singular value functions is that they
are multiplicative in i instead of only submultiplicative, i.e.

φsσ(i j) = φsσ(i)φsσ(j)

for all i, j ∈ I∗ and σ ∈ Sn.

This allows us to define the associated pressure by means of a closed
form expression, without taking a limit. More precisely, we define the
σ-ordered pressure Pσ : [0, n)→ R by

Pσ(s) = log
∑
i∈I

φsσ(i)

...which is real analytic on (0,∞) \ {1, 2, . . . , n} for each σ.

Jonathan M. Fraser Subadditive pressure



A simple form for the pressure

The key advantage of these ordered singular value functions is that they
are multiplicative in i instead of only submultiplicative, i.e.

φsσ(i j) = φsσ(i)φsσ(j)

for all i, j ∈ I∗ and σ ∈ Sn.

This allows us to define the associated pressure by means of a closed
form expression, without taking a limit. More precisely, we define the
σ-ordered pressure Pσ : [0, n)→ R by

Pσ(s) = log
∑
i∈I

φsσ(i)

...which is real analytic on (0,∞) \ {1, 2, . . . , n} for each σ.

Jonathan M. Fraser Subadditive pressure



A simple form for the pressure

Theorem (F ’13)
For all s ∈ [0,∞) we have

P(s) = max
σ∈Sn

Pσ(s).

Manning-Simon ‘07 proved this in the 2-dimensional case.

Falconer-Miao ‘07 gave a similar result in n-dimensions, but they took
the maximum over a larger family of functions.
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A simple corollary

Corollary
The pressure is piecewise real analytic on (0,∞).

This follows from the ‘principle of permanence’.

However, it would be more useful to have explicit bounds on the number
of phase transitions (in terms of n and |I|?)
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Bounding the number of phase transitions

Let σ, τ ∈ Sn.

Assuming the ordered pressures Pσ and Pτ are not equal on the entire
interval (m,m + 1) we will show how to bound the number of times their
graphs can intersect.

Let

E (s) =
∑
i∈I

φsσ(i)−
∑
i∈I

φsτ (i) =
N∑
i=1

aib
s
i

for some ai ∈ R and bi > 0 and N 6 2|I|.

Thus E (s) is a (generalised) Dirichlet polynomial and therefore can have
at most 2|I| − 1 zeros on R.
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Bounding the number of phase transitions

Let m ∈ {0, . . . , n − 1}. In the interval (m,m + 1), there are at most
(

n
m

)
·
(

n −m
1

)
2


distinct pairs of ordered pressures, each of which can cross at most
2|I| − 1 times.

Summing over m this yields an upper bound of

(
2|I| − 1

) n−1∑
m=0

 (n −m)

(
n
m

)
2


on the total number of crossings of the ordered pressures.
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Bounding the number of phase transitions

Since every phase transition for the pressure corresponds to a crossing of
some pair of ordered pressures, and remembering the n potential integer
phase transitions, we can bound the total number of phase transitions for
the subadditive pressure by

n +
(
2|I| − 1

) n−1∑
m=0

 (n −m)

(
n
m

)
2

 ∼ n
√
n 4n

8
√
π

and so the pressure is piecewise real analytic on (0,∞).
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Examples of non-integer phase transitions
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Future work

Question
Is the subadditive pressure always piecewise real analytic or at least
piecewise differentiable?

Question
In the setting of upper triangular matrices, what is the optimal bound on
the number of phase transitions for the pressure in terms of |I| and n?
(My bound is clearly too big).

Question
Is there any interesting geometric or dynamical significance of the ordered
pressures in regions where they are strictly less than the subadditive
pressure?
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Happy birthday Kenneth!
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