
Measuring Funtions Smoothness withLoal Frational DerivativesK. M. Kolwankar and J. L�evy V�ehelProjet Fratales, INRIA RoquenourtB. P. 105, 78153 Le Chesnay Cedex, FraneandIryn, B.P 92101, 44321 Nantes, Franeemail: Jaques.Levy Vehel�inria.fr, Kiran.Kolwankar�iryn.e-nantes.frAbstratWe study a notion of loal frational di�erentiation, obtained by lo-alizing the lassial frational derivative. We show that it is stronglyrelated with the loal H�older exponent, and give an interpretation of thisresult in terms of 2-miroloal analysis.1 IntrodutionMeasuring the loal smoothness of funtions proves to be an important task formany appliations in suh diverse �elds as mathematial analysis, signal andimage proessing or geophysis. Depending on the situation, various de�nitionsof loal regularity have been proposed. The most often used is probably theone based on H�older spaes in their various versions. Suh a haraterizationis for instane entral in multifratal analysis, and is an instrumental tool forimage segmentation or denoising, and Internet traÆ haraterization. Otherimportant measures of loal regularity inlude (loal) frational dimensions (e.g.box, Hausdor� or regularization dimension), whih have been used in variousontexts, suh as tribology or image lassi�ation. In this paper, we are inter-ested in omparing the lassial H�older haraterizations (and their re�nements,see below), with yet another measure, based on the degree of loal frationaldi�erentiability (LFD). This notion was introdued in [11℄ as an attempt toloalize the lassial frational derivative [18℄. In [11℄, it is for instane provedthat Weierstrass funtion W is loally frationally di�erentiable at any pointup to an order whih is preisely the pointwise H�older exponent of W . In thiswork, we provide further results in this diretion (orreting along the way someinauraies of [11℄). In partiular, we prove that, for all funtions belonging toa large funtional spae, the degree of LFD oinides with the loal H�older expo-nent. Furthermore, we give a preise interpretation of the frational derivativein terms of 2-miroloal analysis. 1



Other works dealing with di�erent aspets of the loal properties of frationalintegrodi�erentiation inlude [5, 6, 10, 16, 17℄, and we refer the interested readerto these papers.The rest of this paper is organized as follows: In setion 2, we reall thede�nitions of the loal and pointwise H�older exponents and of the LFD. Setion3 proves the equality between the loal H�older exponent and the degree of LFD.In setion 4, we extend this result to a more preise one using 2-miroloalanalysis. Finally, setion 5 ontains examples on simple funtions, whih allowto understand in a onrete way how LFD ats on signals.2 Measures of loal regularity2.1 Pointwise H�older exponentDe�nition 1 Let � be a positive real number whih is not an integer, andx0 2 R. A funtion f : R ! R is in C�x0 if there exists a polynomial Px0of degree less than � suh that:jf(x) � Px0(x)j � jx� x0j�: (1)When � 2℄0; 1[, this redues to:jf(x)� f(x0)j � jx� x0j� (2)The pointwise H�older exponent of f at x0, denoted �p(x0), is the supremumof the �-s for whih (1) holds. Extension to higher dimensions is straightforward,but will not be onsidered here.As said above, this regularity haraterization is widely used beause it hasdiret interpretations both mathematially and in appliations. It has been forinstane used for speeh synthesis [3℄ and image analysis [14℄. However, thepointwise H�older exponent has also a number of drawbaks, a major one beingthat it is not stable under the ation of (pseudo) di�erential operators. Thus,for instane, knowing the pointwise H�older exponent of a funtion at a pointx0 is not suÆient to predit the H�older exponent of its derivative at the samepoint, and the same happens for the Weyl frational derivative (see below).2.2 Loal H�older exponentThe loal H�older exponent �l measures slightly di�erent features as omparedto �p. It is de�ned as follows: Let � 2℄0; 1[, 
 � R. One lassially says thatf 2 C�l (
) if: 9C : 8x; y 2 
 : jf(x)� f(y)jjx� yj� � CLet now: �l (f; x0; �) = sup f� : f 2 C�l (B (x0; �))g2



Note that �l (f; x0; �) is non inreasing as a funtion of �. We may now givethe de�nition of the loal H�older exponent:De�nition 2 Let f be a ontinuous funtion. The loal H�older exponent of fat x0 is the real number: �l (f; x0) = lim�!0�l (f; x0; �)This exponent is stable under pseudo-di�erentiation or integration. More-over, it is easier to estimate than the pointwise H�older exponent. Its maindrawbak is that it is not as preise as the pointwise one [7℄.An important di�erene between �p and �l is well illustrated on the exampleof the hirp f(x) = jxj�os(1=jxj), f(0) = 0, with �;  > 0. In this ase, atx = 0, �p = � while �l = �1+ . Thus, while �p is sensitive only to what happens\at" 0, �l measures also the loal osillatory behavior of the signal \around" 0.We shall need the following haraterization of the loal H�older exponent interms of wavelet oeÆients:Proposition 1 Let  j;k = 2j=2 (2jx � k) be an orthonormal basis of L2(R)and denote the disrete wavelet oeÆients of f by j;k, i.e.j;k = 2j Z f(x) (2jx� k)dxThen, the loal H�older exponent of f at x is�l = lim�!0(supfs= 9C; 8j;k � B(x; �); jj;kj � C2�sjg) (3)Note that, while neither �p nor �l yield omplete haraterization, it ispossible to ombine the nie properties of eah exponent: this is the topi of2-miroloal analysis, whih we shall use in setion 4.2.3 Loal frational derivativeIn this setion, we reall the de�nition of LFD introdued in [11℄ and makepreise the notion of degree of LFD. We start by briey realling the de�nitionof the lassial frational derivative in the ase where the order is between 0 and1:De�nition 3 [18℄ The (Riemann-Liouville) frational derivative of a funtionf of order q (0 < q < 1) is de�ned as:Dqxf(x0) = � Dqx+f(x0); x0 > x;Dqx�f(x0); x0 < x:= 1�(1� q) ( ddx0 R x0x f(t)(x0 � t)�qdt; x0 > x;� ddx0 R xx0 f(t)(t� x0)�qdt; x0 < x: (4)3



These frational derivatives exists almost everywhere as soon as f is ab-solutely ontinuous ([18℄, page 35). When x = �1, i.e. the integration isperformed on a semi-in�nite domain, the orresponding derivatives Dq�1f arealled the Weyl frational derivatives.In [18℄, the e�et of frational integration on global H�older spaes is investi-gated in full detail. Our aim here is to obtain results for frational derivativesand loal/pointwise exponents.Note for further use the following lassial property of the Weyl deriva-tive ([18℄, theorem 7.1):Proposition 2 Let f belong to L1(R). Then, provided f is suÆiently smooth:\Dq�1f(!) = (i!)q bf(!)where bf denotes the Fourier transform of f .The same type of property holds for wavelet oeÆients:Proposition 3 [15℄ Let  j;k = 2j=2 (2jx�k) be an orthonormal basis of L2(R)with  in the Shwartz lass, and denote the disrete wavelet oeÆients of f byj;k. Then, the wavelet of oeÆients of Dq�1f (in another wavelet basis) aredj;k = 2�jqj;kIt is an easy onsequene of this Proposition and Proposition 1 that theWeyl derivative of order q dereases the loal H�older exponent by exatly q. Inontrast, no suh property holds for �p.The main motivation for introduing loal frational derivatives is to try andremedy to two sometimes undesirable properties of frational derivatives: Nonloality and the behaviour with respet to onstants. As for the �rst point, it islear from the de�nition that the frational derivative of a funtion f dependson the values of f on the whole interval [x0; x℄. The seond feature is also well-known. For instane, the frational derivative of order q from the right of thefuntion f(x) = xp (x > 0; p > �1) is:Dq0+xp = �(p+ 1)�(p� q + 1)xp�q (5)Substituting p = 0 for a onstant funtion in the above formula, one getsDq0+1 = 1=�(1� q)x�q , i.e. the frational derivative of a onstant is not zeroin general. In partiular, the frational derivative of a funtion hanges if oneadds a onstant to this funtion. Thus, the frational derivative of a funtiondepends on the hoie of the origin, whereas the usual notion of di�erentiabilityis a loal onept independent of the origin. The aim of the loal frationalderivative is to modify in a simple way the usual frational derivative to obtainloality and translation invariane. 4



The basi idea is straightforward: Let x be the point at whih one wants tostudy the di�erentiability of f . One �rst subtrats the value of f at x. Thiswashes out the e�et of a onstant term. Seond, one introdues a limit, asshown below, to obtain a loal quantity.De�nition 4 The loal frational derivative of order q (0 < q < 1) of a funtionf 2 C0 : R ! R is de�ned asDqf(x) = limx0!xDqx(f(x0)� f(x)) (6)if the limit exists in R [ f1g.As an example, take again f(x) = xp (x > 0; p > �1). One omputes easilythat Dqf(0) equals 0 if q < p,1 if q > p, and �(q+1) if q = p. Although in thisase, the limits all exist and there is a q where the limit is �nite and non zero,this is not the general situation. Thus, as emphasized in the remark below, weare not in general interested in the value of Dqf , but in the ritial q.This onept of loal frational derivative has been used to study the loalfrational di�erentiability of nowhere di�erentiable funtions [11℄. Equationsinvolving these loal frational derivatives have been studied [2, 12℄ and havefound to be useful in studying phenomena in fratal spae or time.With this notion of LFD, it is natural to de�ne the ritial order of loalfrational di�erentiability, or degree of LFD, as the largest value for whih theLFD exists. The next Proposition shows that this is a well de�ned notion.De�nition and Proposition 1 The degree of LFD of the ontinuous funtionf at x is de�ned as:q(x) = supfq 2 [0; 1℄ : Dqf(x) exists at x and is �niteg:Proof:Let E be the set:E = fq 2 [0; 1℄ : Dqf(x) exists at x and is �niteg:All we need to prove is that E is non empty, so that q(x) is well de�ned as thesupremum of a subset of [0; 1℄. Note that D0xf = f . Sine we are dealing withontinuous funtions, we get that 0 2 E. Thus q(x) exists and is non negative.Remark �nally that, if q > 0 belongs to E, then learly all q0 2 [0; q℄ also belongto E, as is easily seen from de�nition 4. Thus E is always a segment.Remark: In general, Dqf(x) will be zero for q < q and in�nite for q > q whenthe limit exists. Thus, q may be understood as a ut-o� value, muh in thesame way as H�older exponents or frational dimensions. At the ut-o�, Dqf(x)may or not be �nite non zero.Remark: The de�nition of q an easily be extended to funtions in L2, and tosome lasses distributions, as for instane homogeneous ones.5



3 Relation between the degree of LFD and H�olderexponentsIt is intuitively lear that the notions of degree of LFD and H�older exponentsmust be related in some way. The aim of this setion is to prove, via elementarymeans, that, for a large lass of funtions, q indeed oinides with �l. From anintuitive point of view, the fat that it is the loal exponent that omes into playrather than the pointwise one stems from the fat that LFD starts by integrat-ing the funtion around the point of interest, so that the behavior in a wholeneighborhood is important. Thus, for instane, if f has a strong osillatorybehavior around 0, like the hirp, this will have onsequenes on Dq0f throughthe integration in (4). Also, �l behaves well under pseudo-di�erentiation, while�p does not.We start by proving a simple proposition about loal H�older exponents. Letg : 
 ! R be in C�(
), � > 0. where 
 � R is open and x0 2 
. For x 2 
de�ne g+(x) = � g(x)� g(x0) x > x00 x � x0 (7)and g�(x) = � g(x)� g(x0) x < x00 x � x0 : (8)Let 
+ = fx 2 
 : x � x0g and 
� = fx 2 
 : x � x0g Also de�negR : 
+ ! R to be the restrition of g on 
+ and gL : 
� ! R to be therestrition of g on 
�. The proposition states that the loal H�older exponentof g is exatly the minimum of the exponents of g+ and g�. This will resultfrom two basi lemmas. The �rst one is lemma 1.1 from [18℄. In our notation,it reads:Lemma 1 �l(g; x0; �) � minf�l(gR; x0; �); �l(gL; x0; �)g 8� s. t. B(x0; �) � 
.Sine this is true for all �, it implies that�l(g; x0) � minf�l(gR; x0); �l(gL; x0)g (9)Lemma 2 �l(g+; x0) = �l(gR; x0) and �l(g�; x0) = �l(gL; x0).Proof: We onsider only the �rst ase, i.e., �l(g+; x0) = �l(gR; x0). The seondfollows similarly. The inequalitysup jgR(x) � gR(y)jjx� yj� � sup jg+(x) � g+(y)jjx� yj�holds beause the supremum on the left is taken on a subinterval of the domainfor the supremum on the right. This implies �l(g+; x0) � �l(gR; x0). For the6



reverse inequality, note that, for all x, y with x < x0; y > x0, we have thatg+(x) = 0, g+(y) = g(y)� g(x0) and jx� yj > jx0 � yj. As a onsequene:jg+(x) � g+(y)jjx� yj� � jg(x0)� g(y)jjx0 � yj� :This in turn implies �l(g+; x0) � �l(gR; x0).Proposition 4 �l(g; x0) = minf�l(g+; x0); �l(g�; x0)g.Proof:From inequality 9 and lemma 2 it follows that �l(g; x0) �minf�l(g+; x0); �l(g�; x0)g.In order to prove the onverse inequality, we prove �l(g+; x0) � �l(g; x0).supB(x0;�) jg+(x)� g+(y)jjx� yj� = sup[x0;x0+�) jg+(x)� g+(y)jjx� yj�= sup[x0;x0+�) jg(x)� g(y)jjx� yj�� supB(x0;�) jg(x)� g(y)jjx� yj� :This implies that �l(g+; x0) � �l(g; x0). Similarly, �l(g�; x0) � �l(g; x0), henethe result.Theorem 1 Let f be a ontinuous funtion in L2. Then q(f; x0) = �l(f; x0).Proof: De�ning f� as in (7),(8), we writeDqx0(f(x)� f(x0)) = Dqx0(f+ + f�)= � Dqx0+(f+(x) + f�(x)); x � x0;Dqx0�(f+(x) + f�(x)); x � x0:= 1�(1� q) � ddx R xx0 f+(t)(x � t)�qdt; x � x0;� ddx R x0x f�(t)(t � x)�qdt; x � x0;= 1�(1� q) � ddx R x�1 f+(t)(x � t)�qdt; x � x0;� ddx R1x f�(t)(t� x)�qdt; x � x0;� � Dq�1f+ x � x0;Dq+1f� x � x0;From the de�nitions of f+ and f�, it is lear that Dq�1f+ = 0 when x < x0and Dq+1f� = 0 when x > x0. Therefore, if we write g(x) = Dqx0(f(x)�f(x0)),we have that g�, as given by de�nitions (7) and (8), are also equal to Dq�1f�.We have thus replaed our derivatives by Weyl ones, for whih we know that7



order q di�erentiation simply dereases the loal H�older exponent by q. UsingProposition 4, �l(g; x0) = minf�l(g+; x0); �l(g�; x0)g= minf�l(f+; x0)� q; �l(f�; x0)� qg= minf�l(f+; x0); �l(f�; x0)g � q= �l(f; x0)� q:Thus the loal H�older exponent of the funtion x ! Dqx0(f(x) � f(x0)) is nonnegative i� q < �l(f; x0). In onsequene the ritial value q(x0) suh that thelimit Dqf(x0) exists and is �nite for q < q(x0) but not for q > q(x0) is exatly�l(f; x0).4 Frational Di�erentiation and 2 Miroloal Anal-ysisIn this setion, we provide a new interpretation of frational derivative in termsof 2-miroloal analysis. This will allow in partiular to understand the resultof the previous setion in a more transparent way. We �rst reall some basifats about 2-miroloal analysis.4.1 2-miroloal spaesThe de�nition of 2-miroloal spaes [1℄ is based on a Littlewood Paley analysis.A Littlewood Paley analysis is a spatially loalized �lter bank. One may alsounderstand it as an intermediate between a disrete and a ontinuous waveletanalysis. More preisely, let S(R) be the Shwartz spae and de�ne:' 2 S(R) = � b'(�) = 1; k � k< 12b'(�) = 0; k � k> 1:and 'j(x) = 2j'(2jx):One has b'j(�) = b'(2�j�):The f'jg set ats as low pass �lter bank, whih leads naturally to the assoiatedband pass �lter bank:  j = 'j+1 � 'j :8



De�nition 5 Let u 2 S 0(R). The Littlewood Paley Analysis of u is the set ofdistributions: � S0u = ' � u�ju =  j � uOne has: u = S0u+ 1Xj=0�ju:We an now de�ne the two miroloal spaes Cs;s0x0 .De�nition 6 A distribution u 2 S 0(R) belongs to the 2-miroloal spae Cs;s0x0if there exists a positive onstant  suh that, for all j:� jS0u(x)j � (1 + jx� x0j)�s0j�ju(x)j � 2�js (1 + 2j jx� x0j)�s0The 2-miroloal spaes are related to the pointwise H�older spaes through:Theorem 2 [9℄ 8x0 2 R, 8s > 0:� Csx0 � Cs;�sx0� Cs;s0x0 � Csx0 ;8s+ s0 > 0For a given f , we may assoiate to eah point x0 its 2-miroloal domain, i.e.the subset of R�R of ouples (s; s0) suh that f 2 Cs;s0x0 . It is easy to show thatf 2 Cs;s0x0 implies that f 2 Cs��;s0+�x0 for all positive �. This indues a partiularshape for the frontier of the 2-miroloal domain:De�nition and Proposition 2 2-miroloal frontier parameterization [7℄Let f : R ! R, andS (s0; x) = supns : f 2 Cs;s0x oThe 2-miroloal frontier is the set of points�(f; x0) = f(S(s0); s0))gThe funtion S(:; x0) is dereasing and onvex. Moreover, one has, for all pos-itive � : S(� + �; x0) � S(�; x0)� �9



By slight abuse of notation, we shall all S(�; x0) = S(�) the 2-miroloalfrontier. As said in setion 2, the 2-miroloal spaes generalize the H�olderspaes and allow to re-interpret both �l and �p:Proposition 5 [7℄ For all x, we have :�l(x) = S(0; x)and, provided sup�>0 S(�) > 0, �p(x) = �0(x)where �0(x) is the unique value for whihS(��0; x) = �0In other words, �l is obtained as the intersetion between the 2-miroloalfrontier and the s-axis, while �p is the intersetion between the 2-miroloalfrontier and the line s0 = �s, provided sup�>0 S(�) > 0. This last relation holdsif f has some minimum overall regularity, i.e. for instane f belongs to theglobal H�older spae C! for some positive !.Finally, we mention the following ruial property of 2-miroloal spaes.Proposition 6 f 2 Cs;s0x0 i� dfdx 2 Cs�1;s0x0In fat, more is true, as pseudo-di�erential operators may be onsideredinstead of plain di�erentials. We shall deal with a version of this result below.4.2 Frational Derivative as 2-miroloal frontier shiftingIt is well-known that the Weyl frational derivative, being a pseudo-di�erentialoperator, amounts to a horizontal translation of the 2-miroloal domain. In thissetion we show that this also holds under ertain onditions for the Riemann-Liouville frational derivative. This allows to understand the results of theprevious setion in a more general frame. We start by a Lemma (reall thede�nitions of f� from previous setion).Lemma 3 Let f be a ontinuous nowhere di�erentiable funtion. Denote S(�)(resp. S+(�), S�(�)) the frontier of the 2-miroloal domain of f (resp. f+,f�) at x. Then: 8�; S(�) = min(S+(�); S�(�))
10



Proof:Sine f = f++f�, we have that S(�) � min(S+(�); S�(�)). For the reverseinequality, note that, for an arbitrary funtion g, utting g into g+ and g� willat most introdue a disontinuity in the derivative of g. Sine we are dealinghere with a nowhere di�erentiable f , lumping together f+ and f� at x annotinrease the regularity.Theorem 3 Let f be a ontinuous nowhere di�erentiable funtion in L2(R).Then f 2 Cs;s0x0 i� Dqx0f(x) 2 Cs�q;s0x0 .Proof: Write Dqx0f(x) = 1�(1� q) ddx (Iq�1+ f+ + Iq�1� f�); (10)where Iq�1+ f+ = Z x�1 f+(t)(x � t)�qdtand Iq�1� f� = Z 1x f�(t)(t� x)�qdt:Iq�1� are by de�nition the Weyl frational integral operators. It is well-knownand easy to see that the Weyl frational integral of order q � 1 shifts the 2-miroloal frontier by 1�q towards the right along the s-axis. For a proof, notefor instane that, for g 2 L2,\Iq�1+ g(!) = (i!)1�qĝ (see theorem 7.1 in [18℄). Asa onsequene, j�jIq�1+ gj � 2�j(q�1) j�jgj.Sine the derivative of �rst order shifts the frontier to the left by 1, we getthat the operator (d=dx)Iq�1� shifts the frontier by q towards the left. From thisit is lear that f� 2 Cs�;s0�x0 i� (d=dx)Iq�f�(x) 2 Cs��q;s0�x0 . Hene the resultfollows from Lemma 3.5 ExamplesIn this setion we onsider two examples and show that the ritial order isequal to the loal H�older exponent in these ases. Of ourse, this is simply aonsequene of theorem 1, but making the diret omputation is enlighteningand allows to understand more onretely the mehanisms of LFD.
11



5.1 Chirp-like triangle funtionOur �rst example is the funtion de�ned by:f(x) = 8<: anx+ bn 1n � �n � x � 1n�anx+ n 1n � x � 1n + �n0 otherwise ; (11)where n 2 N, �n = n�� , an = n�� bn = n��n���1 and n = n�+n���1,with � > 2 and  2 (0; 1). We have to evaluate1�(1� q) ddx Z x0 f(t)(x� t)q dt = 1�(1� q) ( ddxG(x) + ddxH(x))where, for 1n+1 + (n+ 1)�� < x � 1n + n�� ,G(x) = Z 1n+1+(n+1)��0 f(t)(x� t)q dt (12)and H(x) = ( R x1n�n�� f(t)(x�t)q dt 1n � n�� < x � 1n + n��0 1n+1 + (n+ 1)�� < x � 1n � n�� (13)Consider G(x) = 1Xj=n+1 Z 1j+j��1j�j�� f(t)(x� t)q dt:Z 1j+j��1j�j�� f(t)(x� t)q dt = Z 1j1j�j�� ajt+ bj(x� t)q dt+ Z 1j+j��1j �ajt+ j(x� t)q dt= j��(1� q)(2� q) ((x� 1j + j��)2�q + (x� 1j � j��)2�q�2(x� 1j )2�q)Therefore we havedGdx = 1Xj=n+1 j��1� q ((x � 1j + j��)1�q + (x � 1j � j��)1�q � 2(x� 1j )1�q)= �q 1Xj=n+1 j��(x� 1j + �j��)�1�q(�j��)2; (14)12



where � 2 [�1; 1℄ depends on x and j. As an be heked easily eah term in theabove sum is bounded by j���+1+q and therefore the sum onverges uniformlyand goes to zero with x at least when q <  + � � 2. In order to evaluate H(x)we have to onsider two ases: 1=n�n�� � x � 1=n and 1=n � x < 1=n+n��.In the �rst ase we haveH(x) = Z x1n�n�� ant+ bn(x� t)q dt= n��(x� 1n + n��)2�q(1� q)(2� q) :Therefore in this ase we havedHdx = n��(x� 1n + n��)1�q(1� q) : (15)In the seond ase we getH(x) = Z 1n1n�n�� ant+ bn(x� t)q dt+ Z x1n �ant+ n(x� t)q dt= n��(1� q)(2� q) �(x� 1n + n��)2�q � 2(x� 1n )2�q� :In this ase we havedHdx = n��(1� q) �(x� 1n + n��)1�q � 2(x� 1n )1�q� : (16)Now we an substitute x = 1=n+�n�� (� 2 [�1; 1℄) in equations (15) and (16).and hek for the behavior as x approahes zero (n ! 1). This shows thatdH=dx is of the order of n�q� , giving =� as a ritial order.On the other hand, it is not hard to prove that the pointwise exponent is ,while the loal one is =�, as expeted.5.2 IFSSelf-similar funtions, as onsidered in [8℄, or Fratal Interpolations Funtions(see [4℄) provide a whole lass of funtions for whih the equality between thedegree of LFD and the loal H�older exponent is interesting to hek. Contrarilyto the ase above, the graphs of suh funtions are, under some assumptions,nowhere di�erentiable, and possess a multifratal struture. Without enteringinto details, let us reall that their pointwise H�older exponent varies dison-tinuously everywhere, while �l is onstant with, for all x, �l(x) = miny �p(y).Furthermore, the level sets of the funtion x ! �p(x) are all dense or empty,so that, in every neighbourhood of any x, there is a y where �p(y) = �l. Thisis preisely the mehanism that makes q and �l oinide in this ase: indeed,simple but tedious omputations show that, at eah point x, q is obtained asthe lim inf of �p(y) when y tends to x.13
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