
Weakly Self AÆne Funtions and Appliations inSignal ProessingJaques L�evy V�ehelProjet Fratales, INRIA RoquenourtB.P. 105 - 78153 Le Chesnay. Franeemail: Jaques.Levy-Vehel�inria.frAugust 14, 2001Dediated to Pr. Luis SantaloAbstratWe study a lass of funtions, alled Weakly Self AÆne funtions,whih are a generalization of Fratal Interpolation Funtions wherethe ontration ratios are allowed to evolve in sale. We show how toompute the multifratal spetrum of suh funtions, and mention anappliation to the multifratal segmentation of signals1 IntrodutionFratal Interpolation Funtions (FIF, [1, 3℄) or Self-Similar funtions ([5℄)possess a strong multipliative struture that allows to ompute many re-lated fratal and multifratal quantities of interest. FIF are onstruted ina reursive way: Eah sale is dedued from the preeding one by applying a�nite number of ontrative funtions. These ontrative funtions are �xedone and for all. Speially for appliations in Signal Proessing, a stritmultipliative struture is often too restritive a requirement to impose. Weonsider in this paper a generalization of FIF, alledWeakly Self AÆne fun-tions (WSA), where the ontrative funtions are allowed to vary at eahsale. This added exibility permits to model and proess a muh largerlass of signals, keeping at the same time the omputation of the assoiatedmultifratal features reasonably straightforward.1



This paper is organized as follows. Setion 2 realls the de�nition andmultifratal properties of FIF. We introdue WSA funtions in setion 3.Setion 4 is devoted to the omputation of their multifratal spetrum. Fi-nally, we explain in setion 5 howWSA funtions may be used to perform thesegmentation of a signal into parts whih are \multifratally homogeneous",i.e. have a well de�ned multifratal spetrum.2 Realls on Fratal Interpolation FuntionsTo �x notations, we reall the following fats about self-similar funtions(see for instane [5℄ for proofs).De�nition 1 A funtion F : IRm ! IR is alled self-similar of order k i� :� There exists an open set 
 and d ontrative similitudes S1; :::; Sd ( i.e.ompositions of isometries and homotheties x! �ix of ratios �i < 1)suh that: Si(
) � 
 8i 2 f1; :::; dgSi(
) \ Sj(
) = ; if i 6= j (1)� There exist d reals (�i)i=1;:::;d and a ompatly supported funtion g 2Ck suh that: F (x) = dXi=1 �iF (S�1i (x)) + g(x): (2)� F is not uniformly Ck on a losed subset of 
.Condition (1) is usually alled the \separation ondition". A formal solutionof (2) is: F (x) = 1Xn=0 X(i1;:::;in) nYj=1�ijg(S�1in Æ ::: Æ S�1i1 (x)) (3)where (i1; :::; in) 2 f0; :::; d � 1gn.For an example of a self-similar funtion, onsider simply the Weierstrassfuntion: F (x) = 1Xn=0 2�nssin(2�2nx)where x 2 [0 ; 1℄ and s 2℄0 ; 1℄. Indeed, lettingg(x) = ( sin(2�x) if x 2 [0 ; 1℄0 otherwise2



we get: F (x) = 2�sF (2x) + 2�sF (2x� 1) + g(x):Let us now reall a few fats about multifratal analysis. Multifratalanalysis is onerned with the study of the regularity struture of funtionsor proesses, both from a loal and global point of view. More preisely, onestarts by measuring in some way the pointwise regularity, usually with somekind of H�older exponents. The seond step is to give a global desriptionof this regularity. This an be done in a geometri fashion using Haus-dor� dimensions, or in a statistial one through a large deviation analysis.Formally, one de�nes the pointwise H�older exponent of F at x as:�(x) := lim inf�!0 log(osF (x; �))log(�)where osF (x; �) = sups;s02B(x;�) jF (s) � F (s0)j and B(x; �) denotes the ballentered at x with radius �.The Hausdor� multifratal spetrum desribes the struture of the fun-tion x! �(x) by evaluating the size of its level sets. More preisely, let:E� = fx : �(x) = �gThe Hausdor� multifratal spetrum is the funtion:d(�) = dimH(E�)where dimH(E) denotes the Hausdor� dimension of the set E.Other multifratal spetra are also de�ned, for instane the so-alledlarge deviation and Legendre multifratal spetra. We shall not onsiderthem here.The multifratal spetrum of self-similar funtions assumes a partiularlysimple form. De�ne:�min = infi=1;:::;d log j�ijlog j�ij �max = supi=1;:::;d log j�ijlog j�ijLet � the funtion de�ned impliitly by:dXi=1 �qi���(q)i = 1:Then we have: 3



Theorem 1 Assume that k is larger than �max. Suppose in addition that,for all i, j�ij < 1. If �min > 0, then, for all �:d(�) = 8><>: �1 if � =2 [�min ;�max℄infq2IR (q�� �(q)) otherwiseThis theorem is a version of the so-alled \multifratal formalism", whih,when appliable, allows to obtain d(�) as the Legendre transform of a fun-tion whih is easy to ompute.3 Weakly Self-AÆne funtionsAs said in the introdution, WSA funtions are de�ned as a generalizationof self-similar funtions where the similarity ratios are allowed to vary ateah sale. Formally:De�nition 2 A funtion F : [0; 1℄! IR is alled WSA i� :i) There exists an open set 
 � [0; 1℄ and ontrative similitudes S0; :::; Sd�1suh that :� Si(
) � 
 8i 2 f0; :::; d � 1g� Si(
) \ Sj(
) = ; if i 6= jii) There exists d positive sequenes (�j0)j2IN� ; :::; (�jd�1)j2IN� satisfying 0 <�ji < 1 for every i 2 f0; :::; d � 1g and j 2 IN�, and there exists a ompatlysupported ontinuous funtion g suh that F veri�es :F (x) = g(x)+ 1Xn=1 X(i1;:::;in)2f0;:::;d�1gn0� nYj=1 �jPjp=1 ip2j�p�jij1A g(S�1in Æ:::ÆS�1i1 (x))(4)where, for eah j � 1 and k 2 f0; :::; dj � 1g, we have : �jk = �1.If there exist d reals �0; :::; �d�1 suh that�jk�ji = �i; 8i 2 f0; :::; d � 1g;8j � 1 and 8k 2 f0; :::; dj � 1g;then one reovers the lassial self-similar funtions. The weak self-aÆnityof F is apparent when one realizes that De�nition 2 implies that F an be4



obtained as the limit of the sequene (Fj)j2IN, where F0(x) = g(x) and, forj � 1, Fj is reursively omputed as follows :Fj(x) = d�1Xi=0 �ji�jiFj�1(S�1i (x)) + g(x):We establish now a ondition that ensures the ontinuity of WSA fun-tions. Let:Ind = f�n = (i1; i2; : : : ; in) : ij 2 f0; : : : ; d� 1g; j 2 f1; :::; ngg :I1d = f� = (i1; i2; : : :) : ij 2 f0; : : : ; d� 1g; j 2 IN�g :Proposition 1Assume that: limN!1 sup(i1;i2;:::)2I1d 8<: 1Xn=N nYj=1 j�jij j9=; = 0: (5)Then F is ontinuous.Proof :Write F (x) = limN!1FN (x)where FN (x) = NXn=0 X(i1;:::;in) nYj=1�jijg(S�1in Æ ::: Æ S�1i1 (x)):Clearly, FN is ontinuous for all N 2 IN. We shall show that the sequene(FN ) onverges uniformly to F . We have:jF (x)� FN (x)j = ������ 1Xn=N+1 X(i1;:::;in) nYj=1�jijg(S�1in Æ ::: Æ S�1i1 (x))������� 1Xn=N+1 X(i1;:::;in) nYj=1 ����jij ��� ���g(S�1in Æ ::: Æ S�1i1 (x))���Sine g is ompatly supported, there exists a onstant C � 1, suh that,for all n 2 IN� and for all x 2 [0 ; 1℄, we have:ard n�n = (i1; :::; in) 2 Ind : S�1in Æ ::: Æ S�1i1 (x) 2 supp(g)o � C:5



Thus, for all x:jF (x)� FN (x)j � C sup(i1;i2;:::)2I1d 8<: 1Xn=N nYj=1 j�jij j9=; :Using (5), this implies that (FN ) onverges uniformly to F .Remark 1: Condition (5) is analogous to the one ensuring the ontinuityof GIFS. GIFS are yet another generalization of FIF where not only theontrative funtions are allowed to hange at eah sale, but the number offuntions Si may also vary, and, in partiular, tend to in�nity with n (see[3℄.Remark 2: Condition (5) is obviously satis�ed if there exist a and bsuh that, for all i and j, 0 < a < j�ji j < b < 1.Remark 3: The ondition that g is ompatly supported is unneessaryfor both the de�nition of WSA funtions and the ontinuity riterion. Itjust allows to simplify the analysis. A well loalized funtion g would leadto the same results.4 Multifratal formalism for WSA funtionsWe ompute in this setion the multifratal spetrum d(�) of WSA fun-tions. It is a remarkable fat that, as is the ase for self-similar funtions,a multifratal formalism holds for WSA funtions. Thus, WSA modeling,while allowing muh greater generality than strit self-similarity, also leadsto a quite simple multifratal analysis.To avoid tehnialities, we shall restrit our attention from now on tothe ase where �0 = ::: = �d�1 = � = 1dand, for all i 2 f0; :::; d � 1g: Si(x) = x+ idMore general forms an be treated in the same way at the expense ofvarious ompliations.Our �rst task is to ompute the pointwise H�older exponents. The fol-lowing proposition desribes the pointwise regularity of WSA funtions:6



Proposition 2For all x, let In(x) be the d-adi interval of size d�n ontaining x. Denoteby I�n (x) and I+n (x) the two d-adi intervals of size d�n neighbouring In(x).Let (i1; :::; in) be the oeÆients of the d-adi expansion of x up to rankn, and (i�1 ; :::; i�n ) (resp. (i+1 ; :::; i+n )) be the the oeÆients of the d-adiexpansion up to rank n of any t in I�n (x) (resp.I+n (x)). Then:�f (x) = lim infn!1 min(� nPm=1 logd j�mim jn ;� nPm=1 logd j�mi�m jn ;� nPm=1 logd j�mi+m jn )(6)We shall denote in the sequelBn(x) the set f(i1; :::; in); (i�1 ; :::; i�n ); (i+1 ; :::; i+n )g.When g is a pieewise linear funtion that interpolates d + 1 equidistantpoints that do not lie on a straight line, F is an SGIFS as de�ned in [3℄,and the proposition above is a simple onsequene of proposition 10 in [3℄.In the general ase, the proof follows losely the one in [5℄ for self-similarfuntions.Let us now move to the multifratal spetrum of F . De�ne, for everyinteger j � 1, the d-tuple (uj0; :::; ujd�1) by:(uj0; :::; ujd�1) = (�ji0 ; :::; �jid�1);where (i0; :::; id�1) is a permutation of (0; :::; d � 1) whih yields :�ji0 � ::: � �jid�1 :In other words, for eah j, (uj0; :::; ujd�1) is the d-tuple (�j0; :::; �jd�1) rear-ranged in inreasing order.Theorem 2 Suppose that there exists two reals a > 0 and b > 0 suh that,for every i 2 f0; :::; d � 1g and j � 1 we have :0 < a � uji � b < 1Suppose also that :p(x0; :::; xd�1) = limn ardnj 2 f1; :::; ng : uji � xi8i = 0; :::; d� 1on (7)exists for every (x0; :::; xd�1) 2 [a ; b℄d. Suppose �nally that g is uniformlymore regular than F . Then the Hausdor� multifratal spetrum of F is:7



� d(�) = �1 if � =2 [�min ;�max℄ where8>>><>>>: �min = limn � logd(u1d�1)+:::+logd(und�1)n�max = limn � logd(u10)+:::+logd(un0 )n� if � 2 [�min ;�max℄, thend(�) = infq2IR(q�� �(q))where�(q) = lim infn!1 � nPj=1 logd �(�j0)q + :::+ (�jd�1)q�n =: lim infn!1 �n(q)To prove the theorem, we shall �rst make use of the following well-knownproperty (see for instane proposition 4.9 in [7℄):Proposition 3Let Hs be the s-dimensional Hausdor� measure. Let � be a probability mea-sure on IR. Let E � IR and C be a positive onstant. Then:� if, for all x 2 F , lim supr!0 �(B(x;r))rs < C, then Hs(F ) � �(F )C :� if, for all x 2 F , lim supr!0 �(B(x;r))rs > C, then Hs(F ) � 2sC :Proof of theorem 2 :Let: Fu(x) = 1Xn=0 X(i1;:::;in) nYj=1ujijg(S�1in Æ ::: Æ S�1i1 (x)): (8)It is easy to see that the multifratal spetra of F and Fu oinide. >Fromproposition 2, we get:�fu(x) = lim infn!1 inf(i1;:::;in)2Bn(x)� logd ju1i1 j+ :::+ logd junin jn : (9)Let now s > 0 and q 2 IR. For all j � 1, let:tj = logd �juj0jq + :::+ jujd�1jq�8



and for all i 2 f0; :::; d � 1g, P ji = (uji )q�tj :Reall that � = 1d . As a onsequene: d�1Pi=0 P ji = 1, for all integer j � 1.Consider the probability measure � de�ned on K = [0 ; 1℄ by:8(i1; :::; in) 2 f0; :::; d � 1gn ; �(Si1 :::Sin(K)) = P 1i1 :::P nin : (10)(the existene of � follows from Kolmogorov onsisteny theorem). Letx 2 K and r > 0 be suh that:d�n � r < d�(n�1):Then �(B(x; r))rs � X(i1;:::;in)2Bn(x) P 1i1 :::P ninrs� X(i1;:::;in)2Bn(x) (u1i1 :::unin)q�t1+:::+tn�ns� sup(i1;:::;in)2Bn(x)�u1i1 :::unin�n��n(q)�sq �qLet E� = fx : �f (x) = �g and assume that s > q�� �(q).Case q > 0 :There exists a > 0 whih depends only on s et q suh that s > q���(q)+qa.As a onsequene, there exists n0 2 IN suh that, for all n > n0, we have:�n(q) + sq � a > �:Let Æn = �n(q)+sq and let  be a real number suh that � <  < Æn � a forall n > n0.Then there exists a �nite set IP � IN suh that, for all n 2 IP and n > n0 wehave: inf(i1;:::;in)2Bn(x)� logd u1i1 + :::+ logd uninn < Thus: sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn > �:9



This implies that, for n > n0 in IP,sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn + Æn > aor sup(i1;:::;in)2Bn(x)�u1i1 :::unin�n��n(q)�sq �q > daqnThis entails that lim supr �(B(x; r))rs = +1Case q < 0 :There exists b > 0 depending only on s et q suh that s > q� � �(q) � qb.As a onsequene, there exists n0 2 IN suh that, for all n > n0 we have:�n(q) + sq + b < �:Let Æn = �n(q)+sq and let  be a real suh that � >  > Æn+ b for all n > n0.Then there exist a set IP and n1 2 IN suh that, for all n 2 IP and n > n1,inf(i1;:::;in)2Bn(x)� logd u1i1 + :::+ logd uninn > Thus sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn < �:This implies that, for n > max(n0; n1):sup(i1;:::;in)2Bn(x) logd u1i1 + :::+ logd uninn + Æn < �bOr: sup(i1;:::;in)2Bn(x)�u1i1 :::unin�n��n(q)�sq �q > d�bqnThus lim supr �(B(x; r))rs = +1:This entails that, for any given � 2 [�min ;�max℄, for all q 2 IR and alls > q�� �(q), we have: Hs(E�) = 0:10



As a onsequene, d(�) � infq2IR(q�� �(q)):
The proof that s < q�� �(q) implieslim supr �(B(x; r))rs = 0follows the same lines. Thus, to show that d(�) � infq2IR(q�� �(q)), it suÆesto �nd q and t suh that �(E�) > 0. q and t are solutions of the followingsystem: 8>>>>>><>>>>>>: d�1Pi=0 P ji = 1 8j � 1limn � nPj=1 d�1Pi=0 P ji logd ujin = � (11)Lemma 1The system (11) has a solution i�:�min < � < �maxThis lemma is proved below.For j � 1, denote (Xj) a sequene of iid random variables that take thevalue � log(uji ) with probability P ji . Let:Sn = nXj=1XjWith E(Sn) denoting the expetation of Sn, the strong law of large numbersentails that: limn Sn � E(Sn)n = 0 �-almost surelyThis implies that:limn logd u1i1 + :::+ logd uninn � nPj=1 d�1Pi=0 P ji logd ujin = 011



for �-almost all � = (i1; :::; in; :::) 2 I1d .Using (11), we get limn � logd u1i1 + :::+ logd uninn = �for �-almost all � = (i1; :::; in; :::) 2 I1d .Proposition 2 allows to onlude that�fu(x) = �for �-almost all x 2 E� and thus�(E�) = 1Proof of lemma 1 : To prove the lemma, we shall need to prove the followingslight generalization of a theorem of Hardy.Proposition 4Let (un)n�1 be sequene in [a ; b℄d � IRd suh that (7) is veri�ed. Then:limn f(u1) + :::+ f(un)n = Z[a;b℄d f(x)dg(x) (12)for all ontinuous funtions f : [a ; b℄d ! IR.Note that, sine f is ontinuous and g is of bounded variations, the Stieltjesintegral in (12) does exist.Proof :Let I0;:::;d�1 = I0 � ::: � Id�1 � [a; b℄d where Ij = [ai ; bi℄ for all j. Let1I0;:::;d�1 be the harateristi funtion of I0;:::;d�1. Then:limn 1I0;:::;d�1(u10; :::; u1d�1) + :::+ 1I0;:::;d�1(un0 ; :::; und�1)n = g(b0; :::; bd�1)� g(a0; :::; ad�1)= Z[a;b℄d 1I0;:::;d�1dg(x)Thus (12) is true for any harateristi funtions on [a; b℄d. By linearity,(12) is true for any step funtion, and, by ontinuity, it is true for ontinuousfuntions on [a; b℄d. 12



Reall now that proving lemma 1 amounts to proving that the funtion
T (q) = limn � nPj=1 d�1Pi=0 (uji )q logd ujid�1Pi=0 (uji )qnexists and is ontinuous for all q 2 IR.Consider, for all q 2 IR, the funtion fq de�ned on [a ; b℄d by:fq(x0; :::; xd�1) = d�1Pi=0 (xi)q logd xid�1Pi=0 (xi)qApplying proposition 4 to eah fq allows to dedue that T (q) is well de�nedover IR. The ontinuity of T (q) then stems from the fat that fq(x) is on-tinuous in q uniformly in x.Finally, it is trivial to hek that limq!+1T (q) = �min and limq!�1T (q) =�max.

5 Appliation in Signal ProessingIt is well known that ertain natural signals display some kind of self-similarbehaviour (see [2℄ for examples). However, in most appliations, even anapproximate self-similarity does not hold. The sope of FIF modeling is thusquite restrited. Obviously, a muh larger lass of signals may be representedwith WSA funtions, beause this modeling imposes far less onstraints onthe data. It allows in partiular the small sale features to be di�erent fromthe large sale ones. The interest of developping a method that �nds, for agiven signal, a WSA funtion that represents it is twofold. First, it permitsto give a ompat desription of the signal, even in the ase where it doesnot have de�nite fratal properties. Seond, thanks to theorem 2, the WSArepresentation allows to ompute the multifratal spetrum of the signal.13



In pratie, and speially when one deals with strongly non stationnarysignals, a modeling with a single WSA funtion will still not be exibleenough. A natural extension is to represent the data with a lumping ofWSA funtions, thus taking into aount the fat that several weak self-aÆnemehanisms may ome into play at di�erent periods of time. Formally, theproblem may then be stated as follows: given a L2 funtion F supported onthe interval [a; b℄, �nd a partition of [a; b℄ into p subintervals (Ij)j=1;:::;p andan assoiated set of p WSA funtions (Fj)j=1;:::;p, eah Fj being supportedon Ij, suh that the lumping of the Fj is the best L2 approximation of F .This representation possesses the additional feature that it allows to segmentF into parts whih are multifratally homogeneous: This means that, for allj, the restrition of F to any subinterval of positive measure of (Ij) has thesame multifratal spetrum as Fj . This new kind of stationarity may proveimportant in ertain appliations suh as TCP traÆ analysis (see [6℄).In all generality, the problem above seems hard to solve. However, it ispossible to design a greedy algorithm that �nds an aeptable sub-optimalsolution for many real-world signals. We annot develop this method here,and refer instead the interested reader to [4℄ for a omplete desription. Wejust show an example of appliation of this tehnique to the segmentation ofa voie signal. The original signal is the word \welome" uttered by a malespeaker, ontaining 215 samples. The WSA modeling yields a representationwith seven funtions Fj . As an be seen on �gure 1, the original signal andthe model are visually almost indistinguishable. More importantly, theysound pratially the same, as the interested reader may hek by pointingto http://www-roq.inria.fr/fratales. In addition, the segmentation (seethe red rosses) is phonetially relevant, sine the marks almost perfetlyoinide with the following sounds : silene, /w/, /�l/, silene, /k/, /lm/,silene. The slight disrepany between the position of the segmentationmarks and the exat loation of the phoneti units is due to the fat that,in the urrent implementation of the method, the marks are restrited to beon dyadi points.Referenes[1℄ M.F. Barnsley. Fratals Everywhere. AK Peters, 1993.[2℄ J. Beran. Statistis for long-memory proesses. Chapman and Hall, 1994.
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Figure 1: The word \welome" uttered by a male speaker (in blue) alongwith its approximation (superimposed in green) and the segmentation marks(red rosses).
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