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Abstract 

In ISAR processing, post-processing of the range 

Doppler image is useful to help the practitioner for ship 

recognition. Among the image post-processing tools, 

interpolation methods can be of interest especially when 

zooming. In this paper, we study the relevance of the 

Hölderian regularity-based interpolation. In that case, 

interpolating consists in adding a new scale in the wavelet 

transform and the new wavelet coefficients can be estimated 

from others. In the original method, initially proposed by two 

of the authors, the image is first interpolated along the rows 

and then along the columns. Concerning the diagonal pixels, 

they are estimated as the mean of the adjacent original and 

interpolated pixels. Here, we propose a variant where the 

diagonal pixels are estimated by taking into account the local 

orientation of the image. It has the advantage of conserving 

local regularity on all interpolated pixels of the image. A 

comparative study on synthetic data and real range-Doppler 

images is then carried out with alternative interpolation 

techniques such as the linear interpolation, the bicubic one, 

the nearest neighbour interpolation, etc. The simulation 

results confirm the effectiveness of the approach. 

Keywords: Inverse synthetic aperture radar, range-Doppler 

image, interpolation, Hölder exponent, local regularity. 

1. Introduction 

High-resolution radar images can be obtained by using 

synthetic aperture radar (SAR) and inverse synthetic aperture 

radar (ISAR). Both are key tools for civil and defence 

applications. SAR is usually used to map the land whereas 

ISAR is used for moving objects detection and recognition, 

by taking advantage of the target rotational motion with 

respect to the radar line of sight. 

In radar processing, pulse radar sends out short bursts. 

The distance between the radar and the ship can be deduced 

by measuring the time taken by the radar wave to go to the 

ship and to come back. For each emitted pulse sent 

periodically, the collected backscattered signals are associated 

to range bins. In ISAR processing, this leads to a two-

dimensional (2-D) signal, where one dimension corresponds 

to the ranges under study and the other dimension 

corresponds to the response of each emitted pulse. This 2-D 

signal is the input signal of the processing chain. The purpose 

is to obtain a range-Doppler image, which is a representation 

of the Doppler frequency variations –due to the relative target 

rotational motion– according to the distance between the 

radar and the area under study. Then, the practitioner uses this 

image for ship recognition and classification. Consequently, 

the main objective of ISAR processing is to obtain a range-

Doppler image that is as “clear” as possible, i.e. an image that 

is not “too” blurred and that is not “too” disturbed by 

unwanted phenomena. 

The processing chain includes several steps: 

1/ As a pre-processing, denoising can reduce the influence 

of the additive measurement noise. Thus, Lee et. al [1] 

suggest using subspace methods, initially applied for 

speech enhancement. 

2/ Then, as the target and the radar may move from one 

emitted burst to another, the scatterers are not necessary 

located at the same range bins in the 2-D signal. If radar 

and target motions are not compensated, the resulting 

range-Doppler image is blurred. Therefore, several 

papers deal with this issue. A survey about target motion 

compensation including “range alignment” and “phase 

compensation” can be found in [2]. 

3/ Spectrum analysis plays a key role to get the range-

Doppler image in ISAR processing. In [3]-[5], the 

authors focus their attention on this issue and the time-

frequency analysis. 

4/ In [6], a principal component analysis (PCA) allows the 

3-D rotational motion to be detected to deduce 

information about the relative position of the different 

target scatterers. This method can be used to avoid 

blurred image formation. In [7], the so-called quadratic 

target motion
1
 is also compensated. 

5/ Among the post-processing helping the practitioner for 

ship recognition, image processing can be done such as 

anisotropic diffusion, edge detection, etc. 

In this paper, we propose to study the relevance of 

interpolation techniques for ISAR range-Doppler image post-

processing. This can be useful for the practitioner especially 

when zooming. Our contribution is twofold: 

                                                           
1 The so-called target quadratic motion is due to the target 

acceleration. 



1/ We propose a variant of the Hölderian regularity-based 

image interpolation, initially proposed in [8] by two of 

the authors, Legrand and Levy-Vehel, and studied on 

images such as the well-known “Lena” image and a 

Japanese door. It should be noted that smooth regions 

and irregular ones such as sharp edges and textures 

remain after zooming. In the original method and the 

new variant, interpolating consists in adding a new scale 

in the wavelet transform. The new wavelet coefficients 

can be deduced from others. However, the variant has 

the advantage of preserving the signal local regularity. 

2/ We compare this approach with several kinds of 

interpolation methods such as the linear interpolation, 

the bicubic one, the nearest neighbour interpolation, etc. 

Synthetic data and real ship range-Doppler images are 

considered. 

The remainder of this paper is organized as follows: in 

section 2, we introduce the Hölderian regularity-based 

approach proposed in [8]. Then, we present the variant in 

section 3. Section 4 deals with the comparative study. Then, 

conclusions and perspectives are given. 

2. Hölderian regularity-based image interpolation  

In [8], the authors suggested finding an interpolation 

technique allowing smooth regions and irregular ones to be 

preserved. This was reformulated as a constraint on the local 

regularity of the signal to be preserved. In this section, we 

first define the local regularity of a signal. Then, we present 

what the Hölder exponent is and how to obtain it by using the 

wavelet transform. Then, the Hölderian regularity-based 

interpolation initially proposed in [9] is briefly recalled. 

2.1. Local regularity and Hölder exponent 

The local regularity notion is a generalization of function 

regularity (i.e. continuity and derivability) with non-entire 

values. If the signal f  is continuous in 0t , the local 

regularity in 0t  is equal or higher than 0. In addition, if the 

signal f  is derivable in 0t , the local regularity in 0t  is equal 

or higher than 1. Therefore, a large local regularity 

corresponds to a “smooth” signal, whereas a small local 

regularity leads to an “irregular” signal. 

Let us introduce the Hölder exponent   in 0t  that can 

characterize the local regularity. In the following, we will say 

that “  0tCf  ”, with 0 , if one can find constants 

0C , 0  and a polynomial P , the degree of which is 

lower than n , such as : 

 if  0tt , then     n
ttCttPtf 00   (1) 

The above property is verified for a continuum of  . 

Then, the Hölder exponent   of the function f  in 0t  is 

defined as the supremum value of   satisfying the above 

property (1): 

   0sup tCf 



   (2) 

Then, the Hölder exponent is the maximal local 

regularity of the function f  in 0t . 

2.2. Local Regularity and wavelet coefficients [9] 

Let f  denote the input signal of length N  and let nmc ,  

be its wavelet coefficients, where m  corresponds to the scale 

and n  to the time. See appendix A for details on the wavelet 

transform. 

If f  is a uniform Hölderian signal
2
, then a constant 

0c  exists so that the wavelet coefficients satisfy [10]: 
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Then, the Hölder exponent of the function f  in 0t  is  . 

According to equ. (3), the wavelet-coefficient absolute 

values in the cone of influence 
3
 are bounded by a term which 

depends on the Hölderian exponent. 

If we restraint to the wavelet coefficients in the cone of 

influence, then these coefficients are supposed to be nearly 

equal to 
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Under this assumption, the Hölder exponent can be 

estimated by searching the slope s  of the regression line of 
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Fig. 1. Linear regression of wavelet coefficients 

                                                           
2
  f  is a uniform Hölderian signal if one can find constant 0 , such 

as  R
Cf  , where R  denotes to the set of the real numbers. 

(whereas Z  refers to the set of the integer numbers). 
3
 If   has a compact support, the cone of influence of 0t  in the time-

scale plane is defined in [11] as the set of points  ba,  such as 0t  is 
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2.3. Signal interpolation method 

Given sections 2.1 and 2.2., the interpolation method 

initially proposed in [8] operates into four steps: 

1/ A wavelet transform of the signal, which has to be 

interpolated, is done. 

2/ According to the sub-section 2.2, the signal local 

regularity in 0t  is estimated by searching the slope s  of 

the regression line of 

  
0ininfluenceofconethein and

,,2 0
log

tnm
tmnmc  versus the 

scale      NmmN
2

2 log,,11log  . This regression slope 

provides local-regularity information. See Fig. 1. 

3/ A new wavelet coefficient (denoted by a cross   on 

Fig. 1) is introduced such as the logarithm of the 

absolute values of this wavelet coefficient is on the 

regression line. 

4/ The interpolated signal is reconstructed by making an 

inverse wavelet transform. 

These steps are repeated 
2

N
 times as shown in Fig. 2. 

 
Fig. 2. Interpolation principle based on the dyadic grid 

It should be noted that this method can be repeated to 

interpolate as many times as the user wants. 

However, only the absolute value of the new wavelet 

coefficient is obtained and the coefficient sign is unknown. In 

[9], the authors suggest choosing the opposite of the sign of 

the previous-scale wavelet coefficient.  

This method makes it possible to take into account the 

interpolated signal regularity and the reconstruction error. 

Both properties have practical importance: the regularity 

determines added-information visual appearance (i.e. the high 

frequencies content) whereas the interpolation convergence 

means that the added information is not “very” different from 

the reality. 

2.4. Image interpolation method 

To interpolate an image, the extension of the above 

method to the 2D case cannot be considered because diagonal 

interpolation would use pixels which are not near to the pixel 

of interest. 

Therefore, an alternative consists in using the method 

presented in section 2.3 to first interpolate the rows and then 

deduce the columns of the image. Nevertheless, the 1-D 

interpolation method is not used for diagonal interpolation. In 

[9], these diagonal points are calculated as the mean of the 

adjacent original and interpolated points. See Fig. 3. In 

addition, the Haar wavelet is used to obtain the same result 

for the signals    Nnnz ,,1  and    NnnNz ,,11  . Thus, 

when dealing with a row or a column of pixel in an image, 

our purpose is to obtain the same interpolation when the 

image is flipped horizontally or/and vertically. 

 

 
Fig. 3. Image interpolation method 

3. Hölderian regularity-based image interpolation variant 

The drawback of the above image interpolation method 

is that the diagonal-point interpolation does not conserve the 

Hölderian regularity. Consequently, we propose a new 

approach to interpolate the diagonal points. It is based on the 

estimation of the local orientation, with a tensor structure [12] 

for instance. 

For each diagonal point, the four adjacent points of the 

original image are considered. See Fig. 4. Then, the gradient 

field is calculated on these four points: 

        4,,1,  iiGiGiI
T

yx  (6) 

where the upperscript T  denotes the transpose and xG  (resp. 

yG ) is the gradient according to the x -axis (resp. y -axis). 

Then, the 2×2 covariance matrix of the gradient T  is 

defined by: 
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At that stage, a principal component analysis on T  

provides the orientation   defined by the eigenvector 

associated to the predominant eigenvalue. This orientation is 

used to determine the diagonal-point interpolation. 

The diagonal-point can be interpolated as follows (see Fig. 4): 

1/ after the interpolation along the rows and the columns, a 

new interpolation can be done on the interpolated pixels. 

It provides a first interpolated diagonal pixel 

(represented by a cross on the Fig. 4) if one uses 

the interpolated row pixels or another interpolation 

(represented by a circle on the Fig. 4) if one uses 

the interpolated column pixels. 
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2/ A weighted average of both values is done to obtain the 

value of diagonal-point. Note that the weights depend on 

the orientation  . 

 
Fig. 4. Diagonal point estimation 

in the original method [9] (Fig. 4a) and the variant (Fig.4b) 

4. Comparative study 

We propose to evaluate the interpolation methods on 

synthetic data and real range-Doppler image. A comparative 

study is carried out between the linear interpolation, the 

bicubic one, the nearest neighbour interpolation, the approach 

proposed in [8] and our variant. 

The test image is given on Fig. 5a. On the Fig. 5b-f, the image 

is interpolated three times with various methods. As we can 

see, two methods provide clear interpolated images: the 

nearest neighbour interpolation and our approach. 

 

 

5 10 15 20 25 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

 
Fig. 5a 

original image 

 

 

50 100 150 200

50

100

150

200

0

0.2

0.4

0.6

0.8

1

 
Fig. 5b 

linear interpolation 
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Fig. 5c 

bicubic interpolation 
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Fig 5d 

nearest neighbour 
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Fig. 5e 

Legrand and Levy-Vehel [8] 
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Fig. 5f 

our method 

Fig. 5. Image interpolation on a synthetic image 

Let us now the real range-Doppler image. Due to its size, 

we propose to compare the methods on two-time-interpolated 

images. We present a global view of the image and then we 

zoom with the different interpolation algorithms. 

 
Fig. 6 Original ISAR image 

 
Fig. 7a. Linear interpolation which smoothes the most 

among the tested interpolation techniques 

 
Fig. 7b. Bicubic interpolation 

 
Fig. 7c. Nearest neighbour interpolation 
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Fig. 7d. Levy-Vehel’s method [8] 

 
Fig. 7e. Our variant that smoothes less than the other methods 

5. Conclusions 

The practitioner can use several kinds of interpolations for 

ISAR post processing. The simulation results confirm the 

effectiveness of the new interpolation approach both for the 

synthetic data and range Doppler ISAR image. 
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Appendix A 

 
Fig.6. Dyadic grid and filter bank for multi-resolution 

decomposition of  tx  

The discrete standard wavelet transform is a well-known tool 

to capture both time and frequency information. The wavelet 

transform is the projection on the sliding windowed functions 

 tba,  of a given signal x  of length N  (  N2log  is an integer): 

   






 


a

bt

a
tba 

1
,  (8) 

where  is called the mother wavelet, j  the scale factor and 

k  the translation factor. To reduce the computational cost 

and the redundancy, a discretization of the scale and 

translation factors can be done and leads us to a dyadic grid: 
ma 2 , mnb 2. with  Nm 2log,,1  and mNn  2,,1  

From the point of view of implementation, at each 

decomposition level of the discrete wavelet transform, the 

signal  tx  is filtered by two filters, a high-pass filter  kh  

and a low-pass filter  kg . Both filter outputs are then 

downsampled by a factor of 2 and produce respectively low-

pass and highpass subband outputs, which corresponds to the 

smoothed version of the signal and signal details. Due to the 

downsampling, the number of resulting wavelet coefficients 

nmc ,  is exactly the same as the number of input points N . 
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