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Abstract—This paper studies whether the standard deviation
(std) of the Baltic Sea ice backscattering coefficient (σ◦) depends
on the length of measurement (l). For many kinds of surfaces,
especially for a fractal one, this is the case. The study was con-
ducted using one-dimensional C-band helicopter-borne scatterom-
eter data and ENVISAT synthetic aperture radar (SAR) images.
The results with both data sets indicate mostly a strong linear
dependence between ln(l) and ln(std(σ◦)) up to a distance of
at least a few kilometers. Based on the analysis of empirical and
simulated data (fractal and nonfractal profiles), it seems that sea
ice σ◦ as a function of l is not completely described either by
fractional Brownian motion or by a process with a single-scale
autocorrelation function. Neither can the values of σ◦ be regarded
as samples from only one probability distribution. The regression
coefficients describing the dependency of ln(l) versus ln(std(σ◦))
do not discriminate various ice types better than just mean and std
of σ◦. However, the use of regression coefficients instead of mean
and std is preferred due to their scale-invariant comparability with
the results of other studies. The dependence of std(σ◦) on l should
also be taken generally into account in the data analysis, e.g., when
constructing classifiers for sea ice SAR data.

Index Terms—Fractals, sea ice, standard deviation, synthetic
aperture radar (SAR).

I. INTRODUCTION

THE BALTIC Sea is a semi-enclosed brackish sea water
basin where seasonal ice cover exists from the beginning

of November to the end of May. Surface roughness measure-
ments of various Baltic Sea ice types have indicated the fractal-
like nature of the ice surface [1]. In general, the fractal-like
nature of the surface roughness has been observed for many
natural surfaces, e.g., for cultivated soil in [2] and [3]. In this
paper, we study by means of data analysis if this fractal-like
nature extends from a property of surface to a property of
backscattering coefficient (σ◦). Empirical studies performed for
several synthetic aperture radar (SAR) data sets measured over
many natural targets suggest that this could be the case, e.g., [4].
Additionally, for sea surface, it has been theoretically demon-
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strated that the scattered signal retains some fractal character-
istic of the sea fractal surface [5]. Our aim in data analysis
was to determine if the root mean square (rms) variation of the
Baltic Sea ice σ◦ data depends on the length of measurement.
For a fractal surface, this is the case. The results indicated the
presence of this dependence. Hence, we assessed its usability
for the classification of the ice types in the SAR images. The
identification of different ice types [e.g., new ice, deformed ice
(DI)] which have different surface roughness statistics is very
important for winter ship navigation in the Baltic Sea. In our
analysis, we used C-band data acquired with a helicopter-borne
Helsinki University of Technology Scatterometer (HUTSCAT)
and ENVISAT Advanced SAR (ASAR) images.

II. HUTSCAT INSTRUMENT AND DATA SETS

A. HUTSCAT Instrument

The HUTSCAT is a helicopter-borne nonimaging frequency
modulated carrier wave (FM-CW) scatterometer that operates
simultaneously at 5.4 and 9.8 GHz (C-band and X-band)
with all four linear polarizations [6]. At each channel, 20
backscattered power spectra per second are measured. The
range resolution of the spectra is 0.68 m. Simultaneous with the
backscattering measurements, the target is recorded by a video
camera. A typical flight altitude is 100 m, and the flight speed is
25 m/s. At 5.4 GHz, the 90% confidence interval of the absolute
σ◦ is better than ±0.8 dB. The noise equivalent σ◦ at 5.4 GHz
is less than −28 dB for copolarizations and less than −44 dB
for cross polarizations.

B. HUTSCAT Data Set

HUTSCAT data were acquired during seven ice research
campaigns from 1992 to 2003. R/V Aranda operated by the
Finnish Institute of Marine Research was the base for the
HUTSCAT and ground truth measurements. HUTSCAT mea-
surements were conducted at incidence angles of 23◦ and 45◦

along selected test lines that included various ice types. A
typical length of each test line was tens of kilometers.

Seventy-seven percent of the total HUTSCAT data corre-
sponding to a distance of around 1000 km was assigned into
various ice-type classes by video imagery. The ice-type classes
are based on the classification used operationally for the Finnish
ice charts and also on the Baltic Sea ice code [7]. The ice-type
classes are as follows: Nilas (NI) is a general term for recently
formed ice that is usually less than 10 cm thick. Smooth level
ice (SLI) is almost unaffected by deformation: only cracking or
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TABLE I
ENVISAT SAR IMAGES ACQUIRED OVER THE NORTHERN PART

OF THE BAY OF BOTHNIA IN FEBRUARY 2003

finger rafting may occur. Rough level ice (RLI) has protruding
ice blocks and floe edges and low uneven surface areas, and has
typically broken and frozen several times. Slightly deformed
ice (SDI) consists of ice ridges, uneven surfaces, and level ice
(LI) areas, the sizes of which are usually larger than the pixel
size in SAR images. The average size of LI areas in highly
deformed ice (HDI) is usually smaller than the pixel size, and
the proportion of LI areas is smaller than in SDI, i.e., the
degree of deformation is higher. Discrimination of SDI from
HDI in video imagery is often difficult and subjective. Loose
and frozen brash ice (LBI and FBI) are accumulations of ice
fragments not more than 2 m across. Their surface is very rough
in scales below few tens of centimeters.

Ground truth data provided further classification into the
following snow cover categories: 1) dry snow; 2) moist snow
(volumetric wetness < 1%); and 3) wet snow (wetness > 1%).
According to Hallikainen et al. [8], penetration depth in snow
decreases rapidly as a function of snow wetness for wetness
values below 1%. The decrease is much slower as the wetness
is above this value. Under the wet snow condition, data exist
only for SDI, HDI, and FBI. Only the dry snow condition has
SLI data.

C. ENVISAT Data Set

During a sea ice field campaign in February 2003, two
ENVISAT ASAR image mode precision (IMP) images at HH-
polarization and two alternating polarization precision (APP)
images at HH/HV-polarization were acquired over the northern
part of the Bay of Bothnia (see Table I). In the delivered
images, the pixel size is 12.5 m, and the geometric resolution is
from 22–37 m, depending on image swath type and incidence
angle [9], [10]. On average, the resolution is around 25 m. The
images were rectified to a Finnish Uniform Coordinate System
(northing and easting in meters) with a 25-m pixel spacing,
and thus, the correlation between neighboring pixels is now
negligible. The noise equivalent σ◦ is below −22 dB [9], [10].

III. ANALYSIS METHODS OF SPATIAL STATISTICS

First, we would like to recall the expression for the sample
variance of n-correlated measurement Xi with the same finite
variance σ2. The expectation of the sample variance can be

computed using only the definition of variance for the sum of
random variables and then rearrangement of terms. The result
is (e.g., see [11])

E(s2) = E

(∑n
i=1(Xi −X)2

n− 1

)
= σ2

(
1 − δn(ρ)

n− 1

)
(1)

where the bias term is the sum of the pairwise correlations

δn(ρ) =
1
n

∑
i�=j

ρ(i, j).

If the correlations between measurements near each other
are positive and far apart decrease to zero, the bias term in
(1) becomes negligible when the measurement length is long
enough. In these situations, the sample variance increases with
increasing measurement length even in the stationary case, the
exact form of increase depending on the prevailing correlation
structure.

For reasons outlined in Section I, we are particularly inter-
ested in finding out whether the standard deviations (stds) of
the σ◦ values measured along a line exhibit the same kind of
statistical dependence on the measurement length as is charac-
teristic of fractal-like profiles, like samples from a self-similar
nonstationary fractional Brownian profile. The continuous self-
similar Gaussian process BH(t), indexed by a Hurst parame-
ter H (0 < H < 1), which has the fractional Gaussian noise
(fGn) as its stationary increment process, is called fractional
Brownian motion (fBm) (e.g., see [11]). Due to Gaussianity,
the process BH(t) is fully specified by the expected value and
the covariances.

The functional dependence of the std σ of an fBm on the
measurement length l has a power-law form [12]

ln(σ) = a+ b ln(l). (2)

The coefficient a is related to the actual profile level, whereas b
describes the variation of the profile with spatial frequency.

The b coefficient is related to the fractal dimension D as

b = 2 −D. (3)

Another way to formulate the dependence in question is to
consider the stds of increments of an fBm profile (Allan std)
[13]. Then it holds

std [z(x+ ∆x) − z(x)] = c∆xb. (4)

In this study, we investigated only the dependence between
ln(l) and ln(std(σ◦)) as std(σ◦) has been traditionally used
in σ◦ data analysis and classification. Additionally, the depen-
dence of (2) has been investigated for the Baltic Sea ice surface
profile data [1].

Based on the value of the Hurst parameterH , the correspond-
ing fBm can be classified into three different categories [11].
If H ∈ (1/2, 1), then the associated increment process fGn
is long-range dependent (positive correlation between incre-
ments far apart); if H = 1/2, the associated increment process
consists of independent identically distributed (i.i.d.) normal
variables (the ordinary Brownian motion); and if H ∈ (0, 1/2),
the increment process shows only short-range dependence
(negative correlation between two successive increments). The
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different correlation structures of the increment processes result
in different growing rates of σ as a function of l. In our notation,
the parameter b in (2) equals H .

In the following, the calculation method of (2) for discrete
profiles is first discussed, and then, using simulated fractal
and single-scale autocorrelation function (ACF) profiles, we
examine the accuracy of our calculation method and what kind
of results one can expect if σ◦ follows either fractal, single-scale
ACF, or random process i.i.d. variables. Finally, the calculation
of (2) for HUTSCAT and ENVISAT data is described.

A. Calculation Method for General Discrete Profiles

The std σ as a function of length l is calculated in the
following steps.

Step 1) A profile is divided into disjoint segments with a
fixed length giving n segments per profile. The value
of n depends on the profile length.

Step 2) A window of length d is slid through a segment by
one-pixel steps. In every allowed window position
σ is computed. This yields m distinct σ values for
every segment.

Step 3) m values of σ are averaged for each segment
separately.

Step 4) Steps 2) and 3) are repeated when d increases
from the minimum to the maximum length.

Step 5) For each segment, (2) is fit using d as the explaining
variable. This yields n sets of regression coefficients
for each profile.

The calculation process explained above also illuminates a
property associated to this approach. The regression coefficient
b in (2) yields information on how large-scale and small-
scale variations occur in a given segment. On the other hand,
this information cannot be extracted from σ or ACF statistics
because they are calculated only at one fixed length. Hence,
if the fractal-like property holds, the proposed approach would
give us new information about the nature of the local oscillation
structure of signal statistics.

B. Accuracy of the Analysis Method

Due to their inherent nature, fractals are analyzed by multi-
scale methods, e.g., box counting method and wavelet analysis
[14]. For image data, local fractal dimension (LFD) has been
used as a feature in texture classification in many studies (e.g.,
[15]–[17]). Typically, LFD is estimated in windows around
each data pixel. Usually, suitable window sizes for estimating
LFD are defined experimentally as compromises between de-
sired classification resolution and precision of the estimates. In
several studies, comparisons of the estimates to fractal signals
(images) with known fractal dimension have been made, and
it seems that the estimates are typically not very accurate, like
e.g., in [15].

In our approach, a large set of estimates for a fractal dimen-
sion D with (3) is first calculated using only a limited data
set (segments) and then the global D estimate is obtained by
averaging over these local dimension estimates. To examine the
accuracy level of the D estimates obtained with the proposed
calculation method, its behavior is studied in three disparate
cases using simulated data sets. The first data set consists
of simulated fBm profiles, while the second data set consists

TABLE II
AVERAGE ESTIMATED FRACTAL DIMENSION D AND COEFFICIENT OF

DETERMINATION FOR fBm PROFILES WITHOUT FADING

of some single-scale Gaussian and exponential ACF profiles.
Such profiles are of interest because they exhibit functional
dependence between σ and l if the profile length is relatively
short with respect to the profile correlation length. Finally, the
method was applied for a random process with i.i.d. variables,
where σ will saturate quickly as a function of l. In all cases, our
main interest was to see if the calculation method can reveal the
nature of dependence of σ on l.

We simulated fBm profiles withH values of 0.1, 0.3, 0.5, 0.7,
and 0.9. At each H value, ten profiles of length 1024 points
were simulated. The simulations were performed using the
Fraclab software, which is a freeware fractal analysis Matlab
toolbox [18]. The length of the single-scale Gaussian and
exponential ACF was set to 1000 points. Their std was fixed
to five points and profile correlation length had values of 5, 50,
and 100. Ten profiles were simulated at each correlation length
value. The i.i.d. profiles were also 1000 points in length.

Before the analysis, the minimum and maximum length for
d in Step 4) must be chosen. The minimum length dmin was
chosen to be five profile points. When d increases, the amount
of sample estimates of σ decreases and their average is subject
to greater random variation. The choice for the maximum
length dmax depends on how much random variation is allowed.
In [19], the maximum length was chosen empirically to be 60%
of the segment length. Here, this limit and also lengths of 40%
and 50% are tested to see how the value of b coefficient and
the model fitting accuracy (coefficient of determination r2 for
regression) behave as a function of dmax. The results are used
to determine dmax for all data analyses.

The fractal dimension D of the profiles is estimated using
both full-length profiles and separate segments of length of 20,
40, and 60 points. Segmentwise analysis emulates our analysis
of radar data, where a segment length of 40 points will be
used. It produces a large number of D estimates for a single
profile. These estimates are all averaged together. In case of
fBm profiles, the D estimates with (3) are compared to those
obtained with the Fraclab (calculates regularization dimension
[20]). The results for the fBm and single-scale exponential ACF
profiles when dmax is 60% of the segment length are shown in
Tables II and III, respectively.

Equation (3) always gives an accurate estimate for the fractal
dimension D of the full-length fBm profile (max error of 0.08
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TABLE III
AVERAGE ESTIMATED FRACTAL DIMENSION D AND COEFFICIENT OF

DETERMINATION FOR SINGLE -SCALE EXPONENTIAL ACF PROFILES.
FADING IS CHARACTERIZED BY 50 INDEPENDENT SAMPLES

Fig. 1. PDFs for the slope term b of (2) estimated from the 40-point segments
of ten fBm profiles with theoretical D from 1.1 to 1.9. The bin width is 0.1 in
the pdfs. Number of b coefficients at each D value is 250.

when compared to Fraclab results). When the maximum length
decreases from 60% to 50% and further to 40%, the accuracy
of the estimated D on the average increases slightly. However,
this increase is so small that the maximum length of 60% used
in [19] can also be used very well in here.

With the short segments of the fBm profile, the accuracy of
D estimation decreases. A segment length of 20 points yields
with (3) estimates of D that are close to the theoretical one
only when D ≥ 1.7. For segments of 40 and 60 points, a good
correspondence also exists when D = 1.5. For (2), r2 is very
high at all theoretical D values when the segment length is
either 40 or 60 points. These results indicate that a segment of
40 points is long enough for the accurate detection of a linear
relationship between ln(l) and ln(σ).

When a window of length d is slid through a profile or a
short segment by one point steps, the obtained consecutive σ
values are not computed from disjoint data sets. To see whether
this has an effect on the results, the window was also slid by
steps equal to its length. The D estimates obtained this way
are very close to those estimated with the window sliding by
one point step; the absolute difference is at maximum only at
0.08 (see Table II). However, r2 is now clearly smaller. The
smaller r2 is due to the small number of individual σ estimates
available at longer measurement lengths for averaging, yielding
more variable ln(l) versus ln(σ) curves.

The magnitude of variation of the b coefficient for a segment
length of 40 points is studied using the probability density
functions (pdfs) shown in Fig. 1. These distributions are based

on the simulated fBm realizations. The pdfs at different values
of D have a very wide support and overlap with each other. On
the basis of Fig. 1, it is evident that one cannot expect accurate
separation between fBm profiles, which have different values of
D, using only a single b value computed from a short segment.
On the other hand, the encouraging features seen in Fig. 1 are
that the empirical mean values and modes of the b parameters
preserve the theoretically correct ordering as a function of D.
Hence, a single b value is a meaningful discriminant. A coarse
separation utilizing only a single b value is possible, e.g., the
fBm profiles with D close to 1 can be separated in most cases
from profiles withD close to 2. Even if sea ice radar data would
follow the fBm behavior, it would not be possible to identify
various ice-type classes based on the b coefficient of a short
segment. However, a coarse classification like SLI versus HDI
could be possible.

For the single-scale ACF profiles, the estimated D decreases
when the correlation length increases, i.e., when a profile
becomes smoother. For an exponential profile, the estimated D
is larger than for a Gaussian profile as the exponential profile
is locally rougher. When the correlation length is short, e.g.,
10 points, σ saturates well before the 60% length is reached, and
this results in a low r2. However, with increasing correlation
length, the statistics are very similar to those of an fBm. When
the profile length is increased, r2 starts to decrease, indicating
poor support for the assumption of the linear dependence
between ln(σ) and ln(l), as is the case. With short segments,
the estimated D is approximately equal for all three different
values of the profile correlation length. The average r2 for (2)
is always very high.

For short segments of i.i.d. profiles, the estimated D is very
close to 2, e.g., for random fading with 50 independent samples,
the average b for segments of 40 and 20 points is around 0.02
and 0.03, respectively. The linear dependence between ln(σ)
and ln(l) is practically nonexistent.

We conclude that our analysis method can reliably detect
whether σ in the short profile segment increases with increasing
l according to (2) if this is theoretically the case. There exist
nonfractal profiles that on short intervals exhibit the same
kind of power-law dependence between σ and l as a fractal
realization. Hence, by utilizing only short segments of profile
data, it is not possible to determine if the profile is truly fractal
like, i.e., to determine if σ obeys some power law as a func-
tion of l.

C. Effect of Fading

The fading was added to the profiles according to the follow-
ing model for the radar intensity I [21], i.e.,

I = µI · T · FN (5)

where
µI mean intensity;
T texture random variable that represents the natural

spatial variability of the intensity, E[T ] = 1;
FN fading random variable characterized by a normal-

ized χ2 distribution with 2N degrees of freedom (N
is the number on independent samples), E[FN ] = 1,
Var(FN ) = 1/N .
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TABLE IV
AVERAGE ESTIMATED FRACTAL DIMENSION D AND COEFFICIENT

OF DETERMINATION FOR fBm PROFILES WITH FADING

CHARACTERIZED BY 50 INDEPENDENT SAMPLES

The texture variable T is modeled as a trajectory of the
fBm or a single-scale exponential ACF profile. The number
of independent samples N was chosen to be 10 and 50. The
first figure is a rough estimate for the ENVISAT IMP data
rectified to a pixel size of 25 m, and the second one for
the HUTSCAT data at a resolution of 12.5 m. Before adding
fading to the profiles, their minimum value was moved to 0.001
(i.e., −30 dB) to avoid negative intensity values. The profile
mean was set to 1.

When fading is added to the fBm profiles, the estimated D
is still increasing monotonously with the increasing theoretical
D, but small D values are greatly overestimated, i.e., the range
of D estimates is decreased (see Table IV). This is due to the
fading that adds fast local variations to the fBm profiles and
thus makes them locally considerably rougher than the original
profiles. The average r2 for (2) is always high.

With the fBm profile segments, the estimated D is
now approximately equal regardless of the theoretical D.
Consequently, it is not possible to obtain even a coarse estimate
of the true D using short segments. The linear dependence
between ln(l) and ln(σ) is still moderately present. The pdfs
for b with different theoretical D are now very wide and totally
mixed with each other, making classification of the segments
based on a single b value impossible. However, the average b
values are clearly larger than the average b of 0.02 for random
fading (i.i.d. case).

In general, if the textural variation of the sea ice σ◦ follows
the fBm behavior, then the proposed analysis method, using
small segments of the measured σ◦ data, would yield a quite
constant slope term b regardless of D for the target (i.e., ice
type) σ◦ texture and, thus, very poor classification of ice types.
However, the average b would be clearly larger than that for an
i.i.d. process (e.g., random fading). The linearity between ln(σ)
and ln(l) would be moderate. Whereas if the σ◦ texture follows
the behavior of a profile with Gaussian or exponential ACF,
then short segments would yield average b with only a small
range of values as a function of texture correlation length (see
Table III). The average bwould again be larger than for the i.i.d.
process. The linearity between ln(σ) and ln(l) would be from
moderate to quite strong. Finally, if the variation of the mea-
sured sea ice σ◦ data is an i.i.d. process, then within the small
segments the linearity between ln(σ) and ln(l) would be very
weak and the average b very close to zero.

TABLE V
STATISTICS FOR THE COEFFICIENT OF DETERMINATION r2 AND

REGRESSION COEFFICIENT b OF (2) USING 5.4-GHz HH-POLARIZATION

HUTSCAT SCATTEROMETER DATA ACQUIRED AT AN INCIDENCE

ANGLE OF 23◦ UNDER DRY SNOW CONDITIONS

D. Analysis of HUTSCAT and ENVISAT Data

First, the HUTSCAT data were averaged to a resolution of
12.5 m that compares to the pixel size of many spaceborne
SAR images. The averaged data have around 50 independent
samples in each σ◦. The std of fading is then below 0.62 dB.
The segment length in (2) was chosen to be 40 consecutive
σ◦ values, which corresponds to the measurement length of
487.5 m. The chosen segment length is a compromise between
a long segment for a large number of points in (2) and a short
segment applicable for informative classification. The number
of segments for an ice type varies from 4 to 105.

Rectangular areas representing LI, DI, and HDI were visu-
ally selected from each ENVISAT SAR image. As the visual
discrimination between RLI and SDI in the SAR images is
difficult, these two HUTSCAT ice-type classes were combined
as one DI-type class. The LI class corresponds to SLI in the
HUTSCAT data. The HDI class is a mixture of SDI and HDI
classes of the HUTSCAT data. NIs were not present in the SAR
images. A typical area of a rectangle was 15 km2. Within each
rectangle, ten windows of size 40 × 40 pixels (1000 × 1000 m)
were selected at random locations. The average number of
windows for each ice type is around 140. Equation (2) was
calculated as in the case of the HUTSCAT data, but the average
σ was calculated separately for horizontal and vertical direc-
tions and then these two estimates were averaged together as no
noticeable anisotropy was detected. For the ENVISAT data, the
segment length of 40 σ◦ values corresponds to a measurement
length of 975 m.

IV. RESULTS AND DISCUSSION

The linear relationship between ln(std(σ◦)) and ln(l) is
studied separately with the HUTSCAT and ENVISAT data as
the HUTSCAT data have been reliably divided into a total of
seven different ice classes using video imagery, whereas it was
feasible to classify the ENVISAT data to only three ice types.
However, the ENVISAT results are compared to HUTSCAT
ones. The ice-type classification capability of the regression
coefficients in (2) is compared to the mean and std of σ◦ in
the decibel scale.

A. HUTSCAT Data

A clear linear dependence between ln(l) and ln(std(σ◦)) was
observed in the HUTSCAT data. The average r2 for all data is
0.84, and only 23% of the total of 3096 segments is r2 below
0.80. The fluctuation of r2 does not exhibit dependence on
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Fig. 2. (a) Strongest and (b) weakest dependence between ln(l) and
ln(std(σ◦)) for various ice types using HUTSCAT 5.4-GHz HH-polarization
dry snow Baltic Sea ice data. The section length is 40 σ◦ values (distance of
487.5 m). The incidence angle is 23◦, and the data were averaged to a resolution
of 12.5 m. The maximum and minimum coefficients of determination for each
ice type are given. The vertical line shows the maximum distance used in (2)
according to the 60% rule.

snow condition, polarization, or incidence angle. An example
statistics for r2 and b are presented in Table V. The dependence
between ln(l) and ln(std(σ◦)) for those segments of 40 pixels
where r2 has its maximum or minimum value for each ice type
is shown in Fig. 2 at 5.4-GHz HH-polarization. To see whether
the linear relationship between ln(l) and ln(std(σ◦)) extends to
longer segment lengths, the measurement lines of various ice
types were used in their full length (max 60% length 6.5 km,
average 650 m) in the analysis. The average r2 is still high
(0.84), and there is no correlation between r2 and the length
of measurement line. This suggests the increase of std(σ◦) as a
function of l up to a distance of at least a few kilometers.

The statistical confidence of the obtained segmentwise b
values was estimated using the variation coefficient (vc) of
std(σ◦) and applying t-test to hypothesis testing: H0: b = 0; H1:
b > 0; risk level 0.05. The average vc for windows of length
from 5 to 24 pixels (24 is the 60% length) is typically around
0.65 at the minimum length and then decreases exponentially to
around 0.20 at maximum length. The hypothesis H0 is rejected
for 92% of the total b values. Hence, on the basis of these
results, we conclude that: 1) the obtained b values mostly have
high statistical confidence; 2) b values are not considerably
influenced by limited sample sizes for average std(σ◦); and

3) the large stds of b shown in Table V are due to the large
statistical variability of the individual segments.

When comparing HUTSCAT results with the simulated ones
in Section III-C, it seems that σ◦ as a function of l for
sea ice cannot completely be described either by the fractal,
single-scale ACF, or random process of i.i.d. variables. The
dependence of σ◦ versus l is likely a more complicated process,
e.g., a multi-fBm with a spectrum of different kinds of singu-
larities [22].

The average b is usually the largest for SDI (from 0.094 to
0.250) and the smallest for FBI (from 0.067 to 0.174). These
averages are clearly larger than the values obtained for profiles
of random fading (i.i.d. process). In case of an fBm profile, the
smaller b is, the more uniformly and densely distributed are
the significant changes in the profile. FBI is very homogeneous
in its surface structure, and thus its σ◦ has most likely small
textural variations without any large-scale (i.e., low spatial
frequency variation) patterns, which results in a small b value.
Whereas in the case of SDI, the overall level of σ◦ intensity may
remain low (or high) on a relatively long interval before a large
jump. The large-scale variation for SDI induced by the ridging
intensity variation is greater than the local variation due to the
small-scale texture and the fading. This property is reflected
in the large b. The structure of HDI also exhibits a variation
between ridged ice and LI as SDI, but the fraction of DI is
consistently high, and thus, the large-scale variation of σ◦ is
smaller than for SDI.

There are no systematic differences on the average
segmentwise b values between HH- and VV-polarizations. Un-
der all snow conditions, the average b at cross-polarization
for SDI, HDI, and FBI is consistently larger, on the average
by 33%, than at copolarizations. At cross-polarization, the σ◦

contrast between LI and DI is larger than at copolarizations
[23], yielding increased large-scale textural variation of σ◦. For
other ice types, both increasing and decreasing trends exist.

When the incidence angle increases from 23◦ to 45◦, the
average b at copolarizations for SDI and HDI increases on
average by 30%. At cross-polarization, both increasing and
decreasing trends exist. For LI areas in a DI field, the magnitude
of decrease of σ◦ with increasing incidence angle is larger
than for DI areas, which produces more pronounced large-scale
variation of σ◦ at an angle of 45◦ [24]. At copolarizations, the
decrease of σ◦ with increasing incidence angle is larger than
at cross-polarization [23]. For NI and LI types, no consistent
trends for b exist.

Under the dry snow condition, the average b for SDI and HDI
is always somewhat larger (on the average 10%) than under
moist snow conditions. For FBI, on the contrary, the trend is
always opposite (average 43%). This is also mostly the case
for NI and RLI (average decrease 27%). When the snow cover
is wet, the average b is always the smallest and the relative
difference to dry snow condition is around 75%. In case of
DI types, the observations can be explained by the effect of
the snow cover wetness, which diminishes or even prevents
backscattering from underlying the sea ice surface. The surface
of the snow cover is usually smoother than that of sea ice [1].
The increasing trend from dry to moist snow condition can also
be due to random fluctuation, at least partly, as the data sets
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Fig. 3. Variation of (a) regression coefficients a and b of (2) and (b) mean
and std for a section of 40 σ◦ values (distance of 487.5 m) of various ice types
using HUTSCAT 5.4-GHz HH-polarization dry snow Baltic Sea ice data. The
incidence angle is 23◦, and the data were averaged to a resolution of 12.5 m.
Ellipses represent 90% confidence limits.

of the three snow conditions were acquired from different ice
fields. The effect of snow cover should be studied by measuring
the same ice field under various snow wetness conditions. This
can be done with the ENVISAT data.

When the data resolution decreases, textural variations of σ◦

are more and more averaged, but the effect of fading is reducing
faster. The net effect is that in the total variation of σ◦ the
large-scale oscillations become more pronounced. The decrease
of resolution should therefore increase the average b (up to
some resolution limit). The effect of resolution was studied by
calculating average b values also at a resolution of 25 m for a
distance of 487.5 m. When the resolution decreases from 12.5
to 25 m, the average b increases in almost all cases. The increase
is the smallest for SDI and HDI (average 13%) and the largest
for SLI and FBI (average 56%). The textural variations in SLI
and FBI are smaller than in other ice types, and when fading
reduces they become more visible.

The distribution of the b and a values is so large that
unambiguous ice-type discrimination is not possible in any
snow condition, which is understandable as the ice roughness
variation and, thus, also the σ◦ variation constitute a continuum
instead of distinctly separable classes [1]. On the basis of Fig. 3,
the DI types (HDI, SDI, FBI) are as well separated from LI
areas as by using only the mean and std of σ◦. According to
our assessment, both methods perform equally well for this

Fig. 4. (a) Strongest and (b) weakest dependence between ln(l) and
ln(std(σ◦)) for three ice types using ENVISAT HH-polarization data acquired
over the northern part of the Bay of Bothnia in February 15, 2003. The section
length is 40 σ◦ values (distance of 975 m). The pixel size in the ENVISAT data
is 25 m. The maximum and minimum coefficients of determination for each
ice type are given. The vertical line shows the maximum distance used in (2)
according to the 60% rule.

data set when the window size is relatively large (40 pixels).
The disadvantage of using the std values is that they are fixed
for a certain distance. The results of our analysis support an
assumption that there exists two types of uncertainties in the
estimation of std for σ◦ data. In addition to the uncertainty
due to sampling size, the value of std also seems to depend on
the measurement length. Hence, an accurate comparison with
corresponding values of different studies does not seem to be
possible if the distance used for their determination is not equal.

B. ENVISAT Data

The average r2 for all data is very high (0.98), and only 6.2%
of the total of 2460 r2 values is below 0.95. The average r2 is
larger than in the HUTSCAT data, most likely due to the very
large amount of distinct std(σ◦) values available for averaging
in the ENVISAT data. An example of the dependence between
ln(l) and ln(std(σ◦)) for the ENVISAT data is shown in Fig. 4.
For LI, DI, and HDI, the average b varies from 0.058 to 0.144
(see Table VI). These averages are larger than those of around
0.03 for random i.i.d. processes. The statistical confidence of
the obtained b values is high as the hypothesis, H0: b = 0;
H1: b > 0, is always rejected with risk level 0.05, and the vc
of std(σ◦) is on average around 0.6 at minimum length and
decreases to 0.3 at maximum length. The vc of b for each ice
type varies from 0.13 to 0.34. For the HUTSCAT data, it is from
0.52 to 1.14. This difference between the data sets is likely
due to the different ice-type definitions, data resolutions, and
number of std(σ◦) values for averaging.

The average b always increases with increasing ice deforma-
tion (89% on the average). At HV-polarization, the average b for
HDI is always slightly larger (23% on the average) than at HH-
polarization. For the other two ice types, there are both small
increasing and decreasing trends. The effect of incidence angle
was studied using the SAR images acquired on February 14
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TABLE VI
STATISTICS FOR THE REGRESSION COEFFICIENT b OF (2) USING ENVISAT

SAR DATA ACQUIRED IN THE BAY OF BOTHNIA IN FEBRUARY 2003

and 15 under similar snow and weather conditions. When the
incidence angle increases from 28.6◦–30.9◦ (on February 14)
to 39.1◦–42.6◦ (on February 15), the average b for LI and HDI
at HH-polarization slightly increases (around 7%), but for DI it
slightly decreases (around 7%). DI is a mixture of RLI and SDI
ice types for the HUTSCAT data; for SDI, an increase of b with
increasing incidence angle was always observed, but for RLI b
sometimes decreased.

The effect of snow wetness condition was studied with
the SAR images on February 16 and 19. Unlike the case of
HUTSCAT data, these images were acquired over the same
ice field. Under the dry snow condition, the average b at HH-
polarization is always a little larger (on the average 13%)
than under the moist snow condition. This result confirms
the speculated reason for the decrease of the average b with
increasing snow wetness in the HUTSCAT data: a moist snow
cover reduces the large-scale textural variation of σ◦ as it either
prevents or considerably attenuates scattering from sea ice.

Equation (2) was also studied using a window of size 80 ×
80 pixels (2000 × 2000 m) for the SAR image of February 15.
The average r2 decreases only slightly when the window size
increases; at HH-polarization, the average r2 is 0.98 and 0.96
at window sizes of 1000 and 2000 m, respectively. The average
b for LI and HDI decreased on the average by 26% and 19%,
respectively. This decrease could indicate that the dependence
of σ◦ is changing as a function of spatial frequency.

A typical increase of std(σ◦) in decibel scale with increasing
N ×N window size was investigated using the ENVISAT
image acquired on February 14. The average std(σ◦) for LI
increased from 1.87 dB for a 5 × 5 window to 1.96 dB for a
20 × 20 window. For HDI, the corresponding figures are 2.34
and 2.73 dB. For LI, the increase is subtle, but for DI types it is
noticeable.

In general, the ENVISAT results and their explanations are
identical to the HUTSCAT ones. The differences are likely due
to the different number of independent samples and different
ice-type definitions for the HUTSCAT and ENVISAT data.
The discrimination capability of the coefficient pair (a, b) is
comparable to that of the mean and std of σ◦ when the window
size is 1000 m. Because the data analysis results indicate a
dependence of std(σ◦) of the measurement length, one could
utilize this property, e.g., by designing a classifier that uses
multiple different window sizes as a feature vector.

V. CONCLUSION

We have studied the dependence between measurement
length l and std for the Baltic Sea ice σ◦ using C-band

HUTSCAT scatterometer data and ENVISAT ASAR IMP and
APP images. The results with both data sets indicate in almost
all cases an increase of std(σ◦) with increasing l. In addition,
there is mostly a very good linear relationship between ln(l)
and ln(std(σ◦)) up to a distance of at least a few kilometers.
This dependence is described by the slope term b of (2), which
for fBm profiles is related to the fractal dimensionD = 2 − b. It
was found that the average b depends on ice type, polarization,
incidence angle, snow cover wetness, and data resolution if the
number of independent samples also changes.

The linear dependence between ln(l) and ln(std(σ◦)) is a
property of fBm, but within short data segments this property
is also valid for some nonfractal profiles. Based on our analysis
of empirical and simulated data, it seems that sea ice σ◦ as a
function of l is not completely described by either the fractal,
single-scale ACF, or random process of i.i.d. variables. The
dependence of σ◦ versus l is likely a more complicated process,
e.g., a multi-fBm.

The scatter in the values for coefficients b and a is so
large that unambiguous ice-type discrimination is not possible
using either one of them alone or both together. In our data
set, DI types were mostly discriminated from other ice types,
but this discrimination was not essentially better than that
obtained with just the mean and std of σ◦ determined for the
same window size as b and a. It is possible that a relation
exists between b computed from the surface profile of large-
scale sea ice deformation [i.e., the slope term for ln(l) versus
ln(std(surface height)] and b computed from the σ◦ profile.
This assumption could only be studied with quantitative ground
truth data describing ice surface topography. The use of para-
meters b and a instead of std and mean is preferred due to the
scale-invariant comparability with the results of other studies
obtained with different calculation window sizes and with radar
instruments of different resolutions. As there is dependence
of std(σ◦) on l, this should be taken into account in the data
analysis, e.g., when constructing classifiers for sea ice SAR
data. One way to utilize this property is to design a classifier
that uses multiple different window sizes as a feature vector.
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