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Fractal Analysis of the Motions of a Ball in a Computer Soccer Game
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This paper describes a fractal analysis of the motions of a ball in a computer soccer game. It is
important to know the behaviors of the ball in the game. We obtained the 2-dimensional coordinates
of the ball by using video processing techniques, and we calculated the values of regularization
dimension and box-counting dimension of the time series thus obtained. The values of regularization
dimension and box-counting dimension corresponding to the components parallel to the touch line
are slightly less than those of the components parallel to the goal line. Also, in fact, these values are
rather close to the value of 1, which means that the motions are rather smooth. We also calculated
the fractal dimension of the trajectories of the ball on the playing field.
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I. INTRODUCTION

The motions of players and a ball in a soc-
cer match seem to be quite interesting to both
coaches/trainers/players, on the one hand, and specta-
tors on the other. If we know the trajectories of all the
players and the ball, we can calculate the relevant in-
teresting behaviors of the dynamics involved during the
game. Here, we will focus only on the fractal behaviors
of the motions.

In practice, we could not easily obtain the positions of
all the players and the ball in a real-world match, due
to some technical difficulties. Notice that the motions
in a computer soccer game seem to be rather similar to
those of a real-world soccer match. So, we decided to
try to get the positions from a computer soccer game,
which is rather easier to do than from the real-world
case. Anyway, this is the first attempt to apply fractal
analysis to the behaviors of a ball in a soccer game.

We obtained the coordinates of the ball on a two-
dimensional playing field by using standard video pro-
cessing techniques, and we calculated the values of regu-
larization dimension and box-counting dimension of the
time series for each component. The values of regu-
larization dimension and box-counting dimension corre-
sponding to the components parallel to the touch line
are slightly less than those for the components parallel to
the goal line. Also, in fact, these actual values are rather
close to the value of 1, which means that the motions are
rather smooth. We also calculated the fractal dimension
of the trajectories of the ball on the playing field. This
fact also means that the trajectories are rather smooth.
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In Section II, we briefly summarize some basic back-
ground knowledge of fractal analysis. Among many mea-
sures, the regularization dimension and box-counting di-
mension will be discussed. In the following section, the
properties of the data obtained and the calculated results
will be presented. In the final section, some discussions
and conclusions are given.

II. BASIC THEORY OF FRACTAL ANALYSIS

In recent years, the science of fractals has grown into
a vast area, encompassing almost all branches of science
and engineering [1,2]. Fractals may be found in nature,
or are generated in a computer by using an iterative al-
gorithm. The properties of fractals are characterized by:

1. Self-similarity; a small portion of a fractal object
looks similar to the whole object

2. Scaling relationship;

3. Nonintegral dimension, which gives a quantitative
measure of self-similarity and the scaling law of the
fractal object.

To characterize the fractal behavior of the system,
we will here use the regularization dimension and box-
counting dimension. In this case, we employed FracLab
[3] as one of our analysis tools. In FracLab, plenty of
helpful methods are well implemented.

Regularization dimension is already well summarized
elsewhere [3], so we will omit this here. Instead, we
will briefly summarize the definition and properties of
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box-counting dimension [4]. The box-counting dimen-
sion (sometimes also called the capacity dimension) pro-
vides a relatively simple and appealing way of assigning
a fractal dimension to a set S. Let us assume that the
set S lies in an N -dimensional Cartesian space. Now,
let us cover the set S by a grid of N -dimensional boxes
of edge length ε. We then count the minimum number
N(ε) of boxes needed to cover the set S. We will do this
process for successively smaller ε values. As we let the
size ε of each box get smaller, we expect N(ε) to increase,
because we may need a larger number of smaller boxes to
cover all points of the set. The box-counting dimension
DB is then defined by

DB = lim
ε→0

lnN(ε)
ln(1/ε)

. (1)

This method, however, becomes very time consuming
and so becomes impractical in 3- or more dimensional
systems, because an enormous number of points are re-
quired in order to make sure that a given area in the
space is empty and seldom visited. Therefore, it is
not so useful for dimension determination in a higher-
dimensional system. Further, this method does not keep
track of any inhomogeneities in the set, because a given
box is counted at most once and only once, no matter
how many times the orbit visits the set. In spite of this,
the box-counting dimension is widely used in practice for
estimating the fractal dimension of a variety of fractal
objects.

III. RESULTS

It is very difficult, though not impossible, to obtain
data from a real-world soccer match. There may be some
possible methods for measuring the positions of players
and a ball during the game. First, we may implant a
strip of radio-frequency (RF) communication chips on
the body of each player and the ball. Then, we can col-
lect the signals from the RF chips. If we collect them
in at least two different fixed locations, we can get the
2-dimensional positions of the objects. This is a rather
direct approach. In this approach, we may get quite ac-
curate positions, but it may interfere with the minds
of some players because they are conscious of others
measurements. Furthermore, the equipment may eas-
ily break down in the vigorous activities between players
during the game, such as body collisions or bodily ob-
structions. So, collecting the data may stop. Otherwise,
we must replace any device immediately after breakdown
to continue the measurement. The measured data may
be rather accurate, but the process costs a lot of money.
Second, we can take a rather indirect or passive ap-
proach: we record the scenes by using video camcorders,
again in at least two different fixed locations. We cannot
use just one pair, because the resolution of a camcorder
is still too low to identify the locations of a ball played on

Fig. 1. Time series of x -component of a ball. In the figure,
GK, GI, DI, CK, OS and TO represent goal kick, goal-in,
draw-in, corner kick, offside and time out, respectively.

the ground. So, we must use several pairs of camcorders
to cover the whole playing field. By dividing the play-
ing field into several non-overlapping blocks, each respec-
tive pair of camcorders records the scenes from just one
block of the field. Thus, we must employ at least 2 pairs
of camcorders to obtain the positions of objects for the
whole ground. So, in this case there may be some coinci-
dence problems in adjusting the recorded frames relative
to each other. This makes the accuracy of the measure-
ment rather poor. This method requires very compli-
cated video processing techniques such as mosaicking,
2-D reconstruction and so on. Also, in this case, the
process is costly and not easy to implement.

These methods may also involve huge technical prob-
lems, so that we have to circumvent the difficulties. The
computer soccer game may be a good alternative. In
fact, when we play the electronic soccer game on a com-
puter, we feel that it seems to be nearly statistically
similar to a real-world soccer match. This fact makes
the analysis of a computer game meaningful. Further-
more the analysis methods we have developed here can
be applied both to the virtual game and to the real-world
game. Anyway, we could get the data on positions of a
ball from a computer soccer match, but this is, however,
quite far from a trivial job. The electronic soccer game
we used is FIFA WorldCup 2002TM by Electronic Arts
(EA) Sports. In this game, if we set the RADAR, at the
bottom of the window we have a small inset figure which
shows the positions of all the players and the ball. We
captured these small inset pictures and made them into
a video file for analysis. With this file as an input, we
measured the locations of the ball by using image/video
processing techniques.

We chose a coordinate system such that the x -axis is
along the touchline, and the y-component is parallel to
the goal line. The time series of ball motions are shown
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Fig. 2. Time series of y-component of a ball. In the figure,
GK, GI, DI, CK, OS and TO represent goal kick, goal-in,
draw-in, corner kick, offside and time out, respectively.

Table 1. Basic properties of the data obtained.

Property Value

Total number of frames 5979

Frame size 153 × 85 pixels

Total play time 398s

Frames per second 15

in Figs. 1 and 2. The total time steps cover 5979 frames.
The characteristics of the data are summarized in Table
1. Let us denote the two teams as S and F. At time step
t = 1, team S kicks off the game. At time t = 232, team
S gets corner kick. At time t = 325, team F scores a goal
and kicks off. At t = 812, team S scores a goal and kicks
off again. At t = 1581, team S gets a corner kick. At
t = 2358, team F scores second goal and kicks off again.
At t = 2908, team F gets an offside foul. At t = 3055,
team F gets a goal kick. At t = 3075, the first half is over
and the second half starts. Figs. 1 and 2 only show the
first half of the game. At t = 3698, team F scores third
goal and kicks off again. At t = 4012, team F scores
fourth goal and kicks off again. At t = 4450, team S gets
a free kick. At t = 4730, team F gets a corner kick. At
t = 4878, team S gets a goal kick. At t = 5437, team S
has a free kick. At t = 5872, team F gets a corner kick.
At t = 5961, team S gets a goal kick. In Figs. 1 and
2, we can see many singular behaviors, such as step-like
and cusp-like features. Some of them are due to such
events as corner kick, goal kick, kick-off and free kick,
or due to some unknown artifacts related to the video
processing. The others are intrinsic properties of the
system itself. Here, we are focusing on the latter behav-
ior. To see the fractal behaviors of the ball motion, we
calculated the regularization dimension DR. The calcu-
lated results are summarized in Table 2. All the relevant

Table 2. Calculated results for the time series.

Time series Regularization Dim Box-counting Dim

full x 1.12 1.33

full y 1.17 1.45

1st half x 1.10 1.13

1st half y 1.16 1.18

2nd half x 1.11 1.20

2nd half y 1.17 1.22

clip07 x 1.05 1.05

clip07 y 1.12 1.18

clip11 x 1.05 1.11

clip11 y 1.10 1.16

quantities are calculated using the FracLab matlab tool-
box [3]. The value of x-coordinates of ball position for
the full series full x is 1.12, and the corresponding values
for y-coordinates full y is 1.17. The corresponding box-
counting dimensions are 1.33 and 1.45, respectively. The
results for 1st half are for the 1st half of the game, with
time steps ranging from 1 to 3073. Those for 2nd half
correspond to the 2nd half of the game, which includes
time steps from 3074 to 5979. Thus, time series full
corresponds to the sum of 1st half and 2nd half. clip07
corresponds to the longest clip in the 1st half, with time
steps from 1581 to 2357, and clip11 corresponds to the
longest clip in the 2nd half, with time steps from 3074
to 3697. Thus, these clip07 and clip11 time series are
continuous in themselves, but 1st half, 2nd half and full
time series have discontinuities between clips of ball mo-
tions. This discontinuity is inevitable, since it is inherent
in acquiring the data. For example, if a team scores a
goal in a certain clip, then the ball is located in the goal
area, and then the next step starts with a kick-off in the
center circle area.

Note that a straight line in the time series graph gives
DR = 1, and that a complicated line completely cover-
ing a plane in the time series graph gives DR = 2. As
can be seen in Table 3, the values are rather close to 1,
which corresponds to the value for a single straight line.
Thus, we can say that the ball nearly follows a straight
line. Notice that y-component values of the regulariza-
tion dimension are also small, but consistently slightly
larger than the corresponding x-component values. This
means that the motions along the touch line (x -)direction
are somewhat more regular than those along the goal
line (y-)direction. Also note that the same holds for
the box-counting dimension. The value of box-counting
dimension is the upper boundary of the corresponding
regularization dimension, and the values corresponding
to the 1st half, 2nd half, full are larger than those of the
clip07 and clip11. This is due to the fact that the dis-
continuities in the 1st half, 2nd half, full data increase
the complexity in the graph, as expected.

We plotted the 2-D trajectory of a ball during clip07
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Fig. 3. Trajectory of ball motion during clip07. Team S
has a corner kick and team F finally scores a goal.

Table 3. Calculational results of the fractal dimension of
the 2-D trajectories of the ball.

Data set Fractal Dim

full 1.61

1st half 1.54

2nd half 1.50

clip07 1.05

clip11 1.16

in Fig. 3. To see the 2-D trajectory behaviors of the
ball, we calculated its fractal dimensions. The calcu-
lated results are shown in Table 3. This shows that the
compound trajectories of 1st half, 2nd half, full data are
clearly distinct from the simple continuous trajectory of
clip07, clip11. The calculated values for the compound
trajectories are comparable to the values for the Brow-
nian random motion, which has the fractal dimension
value of 1.5. The values for the clip07 and clip11 are
roughly comparable with the values of the correspond-
ing regularization dimension.

IV. DISCUSSION AND CONCLUSIONS

The calculated data we used were not, in fact, obtained
from a real-world soccer match on a soccer pitch. Our
data, however, are simulated ones. In the computer soc-
cer game, a human controls some activities of the players
in the game and thus interferes in the movements of the
players involved in the game. Originally, the movements
are controlled as programmed in the computer. These
human controls or interferences mainly concentrate on
the players around the ball, and, on the other hand, the
other players of the game are mainly controlled by the
computer program itself.

In conclusion, the component motions of the ball in the
computer soccer game are rather smooth. They show a
strong persistent long-term memory. The values of reg-
ularization dimension and box-counting dimension cor-
responding to the components parallel to the touch line
are slightly less than those for the components parallel to
the goal line. Also, in fact, these actual values are rather
close to the value 1, which means that the motions are
rather smooth. We also calculated the fractal dimension
of the trajectories of the ball on the playing field.

In this work, we only considered a game played by
computer vs. computer. Needless to say, it is worth
extending to various situations such as computer vs. one
or two human players, or one human player vs. another
human player, etc. In fact, a human player can have a
wide range of skills to handle. So, it is also interesting
to try to see these effects systematically. The fractal
dimension thus obtained can be used to characterize the
skewness of the ball motion during the game.

We are preparing a paper [5] on the correlational be-
haviors between a ball and a player and between two
players. This technique can be used to find dominant
players and to divide them into closely related subgroups.
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