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Abstract. This paper investigates detection of architectural distortion in mammographic images 
using support vector machine. Hausdorff dimension is used to characterise the texture feature of 
mammographic images. Support vector machine, a learning machine based on statistical learning 
theory, is trained through supervised learning to detect architectural distortion. Compared to the 
Radial Basis Function neural networks, SVM produced more accurate classification results in 
distinguishing architectural distortion abnormality from normal breast parenchyma. 

1.  Introduction 
Breast cancer has become the second most common cause of cancer death in women in the UK, after lung 
cancer. One in every nine women will develop breast cancer at some point in her life, with nearly 40,700 
new cases diagnosed each year [1]. Early detection of breast cancer is crucial if treatment is to be 
successful. Mammography is considered the most effective method for the early detection of breast 
cancer. Screening programme has been shown to reduce mortality rates by almost half [1]. 

Computer-aided diagnosis (CAD) techniques and systems are effective in detecting masses and 
microcalcifications, however, they have been found to fail in the detection of architectural distortion with 
adequate level of accuracy [2]. The definition of architectural distortion in BI-RADS [3] is as: “The 
normal architecture of the breast is distorted with no definite mass visible. This includes spiculations 
radiating from a point and focal retraction or distortion at the edge of the parenchyma.” It has been 
reported that architectural distortion is the most commonly missed abnormality in false-negative cases [4].  

Several studies have been reported on the detection of architectural distortion. Ayres and Rangayyan 
[5, 6] applied phase portrait maps to characterize oriented texture patterns of the architectural distortion. 
Mudigonda and Rangayyan [7] studied the use of texture flow-field to detect architectural distortion, 
based on the local coherence of texture orientation. Matsubara et al. [8] used mathematical morphology to 
detect architectural distortion around the skin line and a concentration index to detect architectural 
distortion within the mammary gland. There are also a number of studies on the performance of 
commercial CAD system in the detection of architectural distortion. Burhenne et al. [9] obtained a 
sensitivity of 75% of a commercial CAD system in the detection of architectural distortion. Evans et al. 
[10] reported that a commercial CAD system correctly identified 17 of 20 cases of architectural distortion. 
However, Baker et al. [2] investigated the ability of two commercial CAD systems and found that the 
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sensitivity of these systems to be poor in detecting architectural distortion: fewer than 50% of the cases of 
architectural distortion were detected. These findings indicate that the detection of architectural distortion 
is still under developed and there is a need for further research in this area to improve the accuracy of the 
detection. 

In this paper, we present a technique to architectural distortion detection by combing fractal feature 
extraction with support vector machine classification. The mammographic texture is characterised by 
Hausdorff dimension [11]. Support vector machine classifier is used to classify ROIs as including 
architectural distortion or other parenchymal patterns. For comparison purposes, radial basis function 
neural networks has also been applied to classification. It is found that the SVM outperforms radial basis 
networks. 

2.  Dimension Measurement 
Hausdorff dimension is the fundamental definition of the fractal dimension in the theory of fractal 
geometry [11]. 

Let U be any non-empty subset of n-dimensional Euclidean space Rn . The diameter of U is defined as 

the greatest distance apart of any pairs of points in U, i.e. { }sup : ,U x y x y U= − ∈ . If { }iA  is a finite 

collection of set of diameter at most δ  that cover S, i.e. 1i iS A∞
=⊂ ∪  with 0 iA δ< ≤  for each i, then 

{ }iA  is called a coverδ −  of S. Suppose h is a non-negative number. The h-dimensional Hausdorff 

measure of a set 2S R⊂  is defined as 

    
0

(S) lim (S)δδ→
=h hH H     (1) 

with { }{ }(S) inf : is a  of Si i
i

A A δ - coverδ = ∑
hhH   (2) 

The Hausdorff dimension of S is defined formally as, 

{ } { }(S) inf : (S) 0 sup : (S)HD = = = = ∞h h h  H h  H   (3) 

Hausdorff dimension has the advantage of being defined for any set, and is mathematically convenient. 
However, in general, it is difficult to measure the dimension of a set directly from the definition. Many 
alternative methods of measuring the dimension of a set have been developed [11]. Regularisation 
dimension [12] has been proposed as an approximate to the Hausdorff dimension. The advantages of the 
regularisation dimension are: i) it is more precise than other approximation methods; ii) it is easy to derive 
an estimator in the presence of noise due to the fully analytical definition. 

Let Γ  be the graph of a bounded function f: R R→  whose support K is a closed bounded ball. Let 

( )tχ  be a kernel function of Schwartz class S such that: 1=χ∫ . Let 
1 tχ (t)= χ( )a a a  be the dilated 

version of χ at scale a. Let af be the convolution of f with aχ : a af f χ= ∗  Since af S∈ , the length of its 

graph Γon K is finite and given by: 
2'1 ( )

Ka a dtL f t= +∫     (4) 

The regularisation dimension of Γ  is defined as 
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3.  Classification 

3.1.  Support Vector Machine 
Support vector machine (SVM) is a learning tool based on modern statistical learning theory [13]. It gives 
some useful bounds on the generalisation capacity of machines for learning tasks. The SVM algorithm 
constructs a separating hypersurface in the input space. It maps the input space into a higher dimensional 
feature space through some nonlinear mapping [14]. 
 
 
 
 
 
 
 
 

Figure 1. The separation of two classes 
(indicated by data points marked by “ ”s and 
“ ”s) by an optimal hyperplane. 

 

Let vector x Rn∈ denote a pattern to be classified. Each vector xi belongs to either of two classes 
identified by the label yi { 1}∈ ± . In addition, let {( ,i ix y ), i = 1, 2, …, l} denote a given set of l training 

examples. The SVM first maps x to a higher dimensional space Н using a nonlinear operator 

Ф(•): Rn →Н. Consider the case when the data is linearly separable in Н. The nonlinear SVM classifier is 
defined as 

   ( ) ( )Tf x w x b= Φ + , , Rw b∈ ∈H     (6) 
which is linear in terms of the transformed data Ф(x), but non-linear in terms of the original data 

x Rn∈ . The SVM classifier is based on the hyperplane that maximises the separating margin between the 
two classes (Figure 1). When the training set is not separable in Н due to the partial overlapping of the two 
classes, the previous analysis can be generalised by introducing slack variables ξi. The SVM algorithm 

tries to minimise w  while at the same time separating the data with minimum number of errors. 

Mathematically, this is done by minimising 

    
2

1

1
( , )

2

l
i

i
J w w Cξ ξ

=
= + ∑     (7) 

with ξi ≥0 satisfying the constraint: 

   ( ( ) ) 1T
i i iy w x b ξΦ + ≥ − , i = 1, 2, …, l   (8) 

Here, C is a regularisation parameter controlling the tradeoff between model complexities and training 
error in order to ensure good generalisation performance. 

Using the technique of Lagrange multipliers, one can show that a necessary condition for minimising 
J(w, ξ) in (7) is that the vector w is formed by a linear combination of the mapped vectors Ф(xi), i. e., 

    
1

( )
l

i i i
i

w y xα
=

= Φ∑      (9) 

where αi ≥0, i = 1, 2, …, l. are the Lagrange multipliers associated with the constraints in (8). The 
Lagrange multipliers αi ≥0, i = 1, 2, …, l, are solved from the dual form of (7), which is 
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The kernel function in an SVM plays the central role of implicitly mapping the input vector into a 
high-dimensional feature space. Typical choices for kernel function are: Gaussian Radial Basis Function 
(RBF), Polynomial, Sigmoidal, Inverse multiquadratic, etc. The polynomial kernels and Gaussian RBF 
kernels have been applied in this study. They are defined as follows. 

Polynomial kernel:  ( , ) (( ) 1) pK x y x y= ⋅ +     (13) 

Gaussian RBF kernel:  

2

( , ) exp( )
x y

K x y
σ

− −
=     (14) 

where Rσ ∈ , the width for the Gaussian RBF function, and Np∈ , the degree of the polynomial 
function. 

3.2.  Radial Basis Function Neural Networks 
Radial Basis function neural network (RBF) [15] is a major class of neural network model, in which the 
activation of a hidden unit is determined by the distance between the input vector and a prototype vector. 
RBF neural networks can be viewed as a non-linear mapping between a set of inputs and a set of outputs. 
Moreover, RBF neural networks can be regarded as linear-in-the-parameters models which have some 
unique computational advantages over other architectures of neural networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. An RBF neural networks 
with d inputs, M hidden units and one 
output unit. 
 

An example of RBF neural networks with d inputs, M hidden units and one output unit is shown in 
Figure 2. The mapping between inputs and outputs of RBF neural networks can be formed as 
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α

=
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   (15) 

where x = [x1, …, xd]
T Rd∈  is input vector, jω , j = 1, …, M, denotes the weights, 0ω denotes the bias, 

φ(·), j = 1, …, M, are bias functions from Rd to 1R , ║•║ denotes the Euclidean norm, cj Rd∈ , j = 1, …, M 
are RBF centres, βj, j = 1, …, M are parameters of basis functions. Typical choices for φj(·) are: Linear 
function, Cubic function, Thin-plate-spline function, Gaussian function, Multiquadratic function. Gaussian 
function has been used in our study, which is defined as 

    
2

2( , ) exp( )j
j j j

j

α
ϕ α β

β
= −     (16) 

4.  Results and Discussion 
In this experiment, we selected a set of 40 Region of interest from MIAS database [16]. Each ROI is of 
size 128x128 pixels. Spatial resolution is 0.2 mm/pixel. The set includes 19 ROIs with architectural 
distortion and 21 ROIs with normal tissue patterns. The detection of architectural distortion in this study is 
considered as a two-class pattern recognition task. The two classes are “architectural distortion” and 
“normal tissue”. The regularisation dimension of each sampled image is computed from equation (4) and 
equation (5) then input into classifier as a feature. 

Figure 3 shows two typical images of “architectural distortion” and “normal tissue” and their fractal 
surface respectively. A clear difference can be observed between the two cases in terms of the surface 
irregularity. The regularisation dimension appears to hold promise as an effective way of characterising 
the feature of mammographic images. 

 

    
(a)   (b)    (c)  (d) 

Figure 3. Sampled images and their surfaces.  (a) “architectural distortion”; (b) surface of “architectural 
distortion” sample; (c) “normal tissue”; (d) surface of “normal tissue”. 

Generalisation error was regarded as a figure of merit in our evaluations. Generalisation error was 
defined as the total number of incorrectly classified examples divided by total number of examples 
classified. Cross-validation has been used in the model selection in our study. The data samples are 
divided to 4 subsets, each of which has 10 data samples. The classifier is trained 4-times: In the ith (i = 
1,…, 4) iteration, the classifier is trained on all subsets except the ith one. The average of these 4 errors is 
a rather good estimate of the generalisation error. 
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  (a)      (b) 

Figure 4. Plot of generalisation error versus regularisation parameter C. (a) a Gaussian RBF kernel with 
width σ=1, 2 and 5, (b) a polynomial kernel with orders p =2 and 5. 

 
In figure 4(a), we summarise the results for the trained SVM when a Gaussian RBF kernel was used. 

The estimated generalisation error is plotted for different values of the width σ (1, 2, and 5). Similarly, in 
figure 4(b) we summarise the results when the polynomial kernel was used, the estimated generalisation 
error is plotted versus the regularisation parameter C for kernel order p = 2 and p = 5. For the Gaussian 
RBF kernel, we found that the best error level is achieved over a wide range of parameter settings (e.g., 
when σ = 1 and C is in the range of 102-106); a better error level was achieved by polynomial kernel when 
p =5 and C is in the wide range from 102-106. These results indicate that the performance of the SVM 
classifier is not very sensitive to the values of the model parameters. The least number of support vectors 
is 54% when C is set to 100 for polynomial kernel. It is shown that the best classification level using SVM 
is 72.5% of correct answers. 

Table 1 Number of training errors and test errors. 

Number of 
hidden layers 

15 16 17 18 19 20 

Training  25% 25% 25% 25% 45% 25% 
Test 35% 35% 35% 35% 60% 35% 

 
Radial basis function neural networks is also applied for classification. Table 1 illustrates the number 

of hidden layers chosen has an influence on both the training error and test error. The results show that the 
error level using RBF is 65% of correct answers. Compared RBF classifier with SVM, results have shown 
that SVM approach outperforms the RBF neural networks.  

5.  Conclusion 
In this paper, we applied SVM to the detection of architectural distortion in mammographic images by 
employing the Hausdorff dimension concept. Compared to the radial basis function neural networks, SVM 
produces better classification results. Future work will be directed toward the finding other relevant 
features; analysing the complete mammograms for the detection of the architectural distortion; the use of 
large database of mammograms. 
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