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The main results of this work include the following. It is not possible to discriminate open water and various ice types 
using the level of , co- or cross-polarization ratio, or standard deviation of °σ °σ . C-band VH-polarized °σ  at high 
incidence angle provides slightly better ice type discrimination accuracy than any other combination of radar parameters. 
VH-polarization is more suitable for estimating the degree of ice deformation than co-polarizations. Snow wetness has a 
large effect on the  statistics, e.g. when snow cover is wet then the °σ °σ  contrasts between various ice types are smaller 
than in the dry snow case. Incidence angle dependence of the C-band HH-polarized °σ  was derived for level ice and 
deformed ice. The method for deriving this is applicable for any SAR sensor. There is a large variation of level ice °σ  
with changing weather conditions. A 1-D high-resolution thermodynamic snow/ice model generally helps to interpret 
changes in the  time series. The modeled snow and ice parameters are related to the changes in . It was found out 
that the standard deviation of  for various ice types depends on the length of measurement. This may be utilized in the 
SAR image classification. It is not possible to resolve concentrations of thin new ice and all other ice types combined in the 
Baltic Sea using radiometer data as has been done for the Arctic seasonal ice zones. 

°σ °σ
°σ

Keywords    Baltic Sea, microwave radiometry, radar polarimetry, radar scattering, remote sensing, sea ice, synthetic 
aperture radar. 

ISBN (printed)    978-951-22-8740-6 ISSN (printed)        0786-8154 

ISBN (pdf)          978-951-22-8741-3 ISSN (pdf)                    

Language            English Number of pages    146 p. + app. 111 p. 

Publisher            TKK / Laboratory of Space Technology 

Print distribution      TKK / Laboratory of Space Technology                                                                                                       

  The dissertation can be read at http://lib.tkk.fi/Diss/      



AB

 

VÄITÖSKIRJAN TIIVISTELMÄ 
TEKNILLINEN KORKEAKOULU 
PL 1000, 02015 TKK 
http://www.tkk.fi 

Tekijä   Marko Mäkynen 

Väitöskirjan nimi 
Investigation of the Microwave Signatures of the Baltic Sea Ice 

Käsikirjoituksen päivämäärä    16.10.2006 Korjatun käsikirjoituksen päivämäärä     2.3.2007 

Väitöstilaisuuden ajankohta     4.5.2007 

  Monografia   Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit) 

Osasto                       Sähkö ja tietoliikennetekniikan osasto  
Laboratorio               Avaruustekniikan laboratorio 
Tutkimusala              Mikroaaltokaukokartoitus 
Vastaväittäjä             Dr. Wolfgang Dierking, Alfred Wegener Institute, Saksa 
Työn valvoja             prof. Martti Hallikainen 
Työn ohjaaja             prof. Martti Hallikainen 

Tiivistelmä 
Talvimerenkulku Itämerellä tarvitsee luotettavaa ja ajantasaista informaatiota Itämeren nopeasti muuttuvista jääoloista. 
Synteettisen apertuurin tutkan (SAR) kuvat ovat ainoa tapa tuottaa operatiivisesti tarvittavaa jääinformaatiota riippumatta 
päivänvalon määrästä ja lähes riippumatta sääolosuhteista. RADARSAT-1 ja ENVISAT SAR-tutkakuvien luokittelu-
algoritmit perustuvat tällä hetkellä lähinnä kuvien rakenteeseen, eikä merijään geofysiikkaa ja empiiristä tilastotietoa eri 
jäätyyppien sirontavasteista hyödynnetä kuin rajallisesti. SAR-kuvien luokittelutulosten tulkitseminen on siten usein 
vaikeaa. Sekä itse luokittelutulokset, että niiden tulkinta parantuisivat, jos luokittelualgorimit hyödyntäisivät edellä 
mainittua tietoa. Satelliittiradiometrien kuvat eivät sovellu Itämeren jään operatiiviseen monitorointiin niiden karkean 
spatiaalisen resoluution vuoksi. Niillä kuitenkin voitaisiin validoida SAR-kuvien luokittelualgoritmeja, koska ne ovat SAR-
kuvista riippumaton datalähde Itämeren jääoloista. 
Tässä työssä on suoritettu seuraavaa perustutkimusta Itämeren jään mikroaaltokaukokartoituksessa, minkä tarkoituksena on 
tukea SAR- ja radiometrikuvien operatiivisten luokittelualgoritmien kehitystyötä: (1) eri jäätyyppien C- ja X-kanavien 
sirontakertoimien ( ) statistiikka, (2) eri jäätyyppien L- ja C-kanavien polarimetristen diskriminanttien statistiikka, (3) 

:n mittauskulmariippuvuus RADARSAT-1 SAR-kuvissa, (4) 
°σ

°σ °σ :n keskihajonnan ja mittausmatkan välinen riippuvuus 
ja hyödyntäminen jäätyyppiluokittelussa, (5) SAR-kuvien sirontakerroinaikasarjojen vertailu merijään termodynamiikka-
malliin, ja (6) eri jäätyyppien kirkkauslämpötilojen statistiikka. 
Työssä saavutettiin seuraavia merkittäviä tuloksia. Eri jäätyyppien ja avoveden luokittelu ei ole mahdollista käyttäen 
sirontakerrointa, yhdensuuntais- ja ristipolarisaatiosuhdetta tai °σ  keskihajontaa. C-kanavan VH-polarisaation °σ  
suurella mittauskulmalla luokittelee eri jäätyypit hieman paremmin kuin mikään muu C- ja X-kanavan tutkaparametri-
kombinaatio. Merijään deformoitumisasteen estimointiin sopii paremmin VH-polarisaation  kuin yhdensuuntaispolari-
saation. Lumipeitteen kosteudella on suuri vaikutus sirontakerroinstatistiikkaan; erityisesti, kun lumipeite on märkä on 
sirontakerroinkontrasti eri jäätyyppien välillä pienempi kun lumipeite on kuiva. C-kanavan HH-polarisaation 

°σ

°σ :n 
mittauskulmariippuvuus määritettiin tasaiselle ja deformoituneelle jäälle. Mittauskulmariippuvuuden laskentamenetelmää 
voidaan käyttää mille tahansa SAR-tutkakuvalle. Muuttuvat sääolosuhteet aiheuttavat suuria muutoksia tasaisen jään 

:ssa. Merijään termodynamiikkamalli yleensä auttaa selittämään muutoksia °σ °σ :n aikasarjassa. :n muutokset ovat 
yhteydessä termodynamiikkamallilla laskettuihin lumen ja jään parametreihin. 

°σ
°σ :n keskihajonnan havaittiin riippuvan 

etäisyydestä. Tätä riippuvuutta voitaneen hyödyntään SAR-kuvien luokittelussa. Itämerellä satelliittiradiometridatalla 
pystytään määrittämään vain merijään kokonaiskonsetraatio, toisin kuin arktisten merien kausiluontoisilla merijääalueilla, 
missä myös eri jäätyyppien konsentraatioiden määrittäminen on mahdollista. 

Asiasanat    Itämeri, kaukokartoitus, merijää, mikroaaltoradiometri, synteettisen apertuurin tutka, tutkapolarimetria, 
tutkasironta. 

ISBN (painettu)     978-951-22-8740-6 ISSN (painettu)     0786-8154 

ISBN (pdf)             978-951-22-8741-3 ISSN (pdf)                   

Kieli                       englanti Sivumäärä              146 s. + liit.. 111 s. 

Julkaisija      TKK / Avaruustekniikan laboratorio 

Painetun väitöskirjan jakelu      TKK / Avaruustekniikan laboratorio 

  Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/      



Table of Contents 

Preface....................................................................................................................................... iv 

Abstract ...................................................................................................................................... v 

Tiivistelmä................................................................................................................................. vi 

List of Acronyms......................................................................................................................vii 

List of Symbols ......................................................................................................................... ix 

List of Appended Papers ......................................................................................................... xiv 

1 Introduction ................................................................................................................. 1 

2 Overview of the Baltic Sea Ice.................................................................................... 3 

2.1 General Baltic Sea Ice Conditions .............................................................................. 3 

2.2 Classification of the Baltic Sea Ice ............................................................................. 4 

2.3 Effect of Snow Cover.................................................................................................. 6 

2.4 Typical Structure of Level Ice and Deformed Ice....................................................... 7 

2.5 Ice Salinity and Density .............................................................................................. 7 

2.6 Geophysical Research Work on the Baltic Sea Ice ..................................................... 7 

2.7 Capability of Satellite Remote Sensing to Monitor Baltic Sea Ice ............................. 8 

2.8 Operational Monitoring of the Baltic Sea Ice in Finland ............................................ 9 

3 Theoretical Background of Microwave Remote Sensing of Sea Ice ........................ 12 

3.1 Backscattering Coefficient ........................................................................................ 12 

3.2 Radar Polarimetry ..................................................................................................... 18 

3.3 Brightness Temperature ............................................................................................ 21 

4 Previous Research in Microwave Remote Sensing of the Baltic Sea Ice ................. 22 

4.1 Dielectric Constant of Sea Ice and Snow.................................................................. 23 

4.2 Geometric Properties of Sea Ice................................................................................ 24 

4.2.1 Ice surface roughness ....................................................................................... 24 

4.2.2 Surface structure of ice ridge ........................................................................... 27 

4.3 Theoretical Backscattering Models........................................................................... 28 

4.3.1 Level ice ........................................................................................................... 29 

4.3.2 Ice ridges .......................................................................................................... 32 

4.4 Backscattering Signatures ......................................................................................... 36 

4.4.1 C- and X- band signatures................................................................................ 36 

4.4.2 L- and C-band polarimetric discriminants ....................................................... 37 

4.4.3 Comparison between backscattering signatures and weather data................... 38 

i 



4.5 Sea Ice Classification by Spaceborne SAR Images .................................................. 38

4.5.1 Classification of various ice types.................................................................... 39 

4.5.2 Open water – sea ice discrimination ................................................................ 40 

4.5.3 Sea ice thickness estimation............................................................................. 41 

4.5.4 Sea ice dynamics .............................................................................................. 42 

4.6 Sea Ice Classification by SAR Interferometry .......................................................... 43 

4.7 Sea Ice Properties with Radar Altimetry................................................................... 45 

4.8 Brightness Temperature Signatures .......................................................................... 46 

4.9 Sea Ice Classification by Spaceborne Radiometer and Scatterometer Images ......... 47 

4.10 Summary ................................................................................................................... 50 

5 Investigation of Backscattering Signatures of the Baltic Sea Ice.............................. 52 

5.1 Radar Instruments and Data Sets .............................................................................. 52 

5.1.1 HUTSCAT scatterometer................................................................................. 52 

5.1.2 RADARSAT-1 ................................................................................................. 55 

5.1.3 ENVISAT ASAR ............................................................................................. 56 

5.1.4 EMISAR........................................................................................................... 57 

5.2 Sea Ice and Snow Cover Wetness Classes ................................................................ 58 

5.3 C- and X-band Backscattering Signatures ................................................................ 59 

5.3.1 Mean and 90% confidence interval of σ° ........................................................ 60 

5.3.2 Probability density function of σ° ................................................................... 64 

5.3.3 Co- and cross-polarization ratios...................................................................... 64 

5.3.4 Maximum likelihood classification of surface types........................................ 69 

5.3.5 Mean and standard deviation............................................................................ 70 

5.3.6 Backscattering contrast between ice deformations and level ice ..................... 72 

5.3.7 Comparison with previous results .................................................................... 74 

5.3.8 Summary .......................................................................................................... 75 

5.4 L- and C- Band Polarimetric Discriminants.............................................................. 75 

5.5 Incidence Angle Dependence of C-band HH-polarization °σ ................................. 77 

5.6 Dependence between Standard Deviation and Measurement Length 
for C-band ........................................................................................................... 83 °σ

5.6.1 Theoretical background.................................................................................... 83 

5.6.2 Analysis methods ............................................................................................. 84 

5.6.3 HUTSCAT results ............................................................................................ 87 

5.6.4 ENVISAT results ............................................................................................. 92 

5.6.5 Summary on classification of ice types............................................................ 94 

ii 



5.7 Comparison between  Time Series and Thermodynamic Snow/Ice Model ........ 95°σ
5.7.1 One-dimensional thermodynamic snow/ice model (HIGHTSI) ...................... 95 

5.7.2 Test sites and data sets ..................................................................................... 96 

5.7.3 HIGHTSI results .............................................................................................. 98 

5.7.4 General evolution of °σ ................................................................................... 99 

5.7.5  time series vs. HIGHTSI analysis ............................................................ 100 °σ

5.7.6 Comparison with previous results .................................................................. 101 

5.7.7 Significance of the results for SAR image interpretation .............................. 103 

6 Investigation of Passive Microwave Signatures of the Baltic Sea Ice .................... 104 

6.1 HUTRAD Radiometer and Data Sets...................................................................... 104 

6.2 Polarization Ratio Signatures .................................................................................. 106 

6.3 Discrimination of Open Water and Various Ice types ............................................ 107 

6.4 Applicability of the NASA Team and Bootstrap Ice Concentration Algorithms ... 111 

6.5 Summary ................................................................................................................. 115 

7 Conclusions ............................................................................................................. 116 

7.1 Recommendations for Future Research .................................................................. 117 

8 Summary of Appended Papers................................................................................ 119 

References .............................................................................................................................. 122 

 

iii 



Preface 

This thesis has been conducted in the Laboratory of Space Technology in Helsinki University 
of Technology under supervision of Professor Martti Hallikainen. My work for the thesis 
started back in 1994 and continued with varying intensity up to 2006. The work was carried 
out within five TEKES and one EU funded projects on operational monitoring of the Baltic 
Sea ice with SAR data. 

I want to express my gratitude to Professor Martti Hallikainen for acting my supervisor and 
tutor in all thesis papers and in my thesis, and for being patient in waiting my thesis to be 
completed. I am greatly grateful to following colleagues, who co-authored my thesis papers: 
Markku Similä, Dr. Juha Karvonen, Dr. Bin Cheng at FIMR, Dr. Terhikki Manninen and  
Dr. Timo Vihma at FMI. Markku and Terhikki also helped me in many theoretical aspects of 
data analysis. I also thank Ari Seinä (FIS/FIMR) and Robin Berglund (VTT) for co-operation 
in the sea ice projects. 

I want to thank Jenny and Antti Wihuri Foundation for supporting my studies. 

Finally, I thank my parents for encouragement. 

 

Espoo, AVA - March 29, 2007. 

Marko Mäkynen 

 

 

iv 



Abstract 

It is essential for winter shipping in the Baltic Sea to get reliable and up-to-date information 
of its rapidly changing ice conditions. Spaceborne synthetic aperture radar (SAR) images are 
the only way to produce this information operationally in fine scale independent of daylight 
and nearly independent of weather conditions. Currently, classification algorithms for the 
RADARSAT-1 and ENVISAT SAR images utilize mainly the image structure and only 
limited information on sea ice geophysics and empirical statistics of backscattering signatures 
of various ice types are utilized. Therefore, interpretation of the classification results is often 
difficult. Both classification results and their interpretation should very likely improve with 
the addition of this information. Spaceborne microwave radiometer data are not suitable for 
the operational Baltic Sea ice monitoring aiding ship navigation due to their coarse spatial 
resolution, but they can provide an independent data source on the sea ice conditions for 
validation of the SAR classification algorithms. Both SAR and radiometer data based sea ice 
products can also be utilized in the geophysical studies of the Baltic Sea ice. 

In order to support development of operational classification algorithms for SAR and 
radiometer data, basic research on the microwave remote sensing of the Baltic Sea ice has 
been conducted in this work. The research work included the following topics: (1) statistics of 
C- and X-band backscattering signatures of various ice types, (2) statistics of L- and C-band 
polarimetric discriminants of various ice types, (3) radar incidence angle dependence of 
backscattering coefficient ( ) in RADARSAT-1 SAR images, (4) dependence between 
standard deviation and measurement length for 

°σ
°σ  signatures and its usability in sea ice 

classification, (5) comparison between SAR °σ  time series and results from a thermodynamic 
snow/ice model, and (6) statistics of passive microwave signatures of various ice types. 
Additionally, a comprehensive literature review of the previous work on the microwave 
remote sensing of the Baltic Sea ice is presented. 

The main results of this work include the following. It is not possible to discriminate open 
water and various ice types using the level of °σ , co- or cross-polarization ratio, or standard 
deviation of . C-band VH-polarized °σ σ°  at high incidence angle provides slightly better ice 
type discrimination accuracy than any other combination of C- and X-band radar parameters. 
VH-polarization is more suitable for estimating the degree of ice deformation than co-
polarizations. Snow wetness has a large effect on the σ°  statistics. Notably, when snow cover 
is wet then the  contrasts between various ice types are smaller than in the dry snow case. 
Incidence angle dependence of the C-band HH-polarized 

σ°
σ°  was derived for level ice and 

deformed ice. It is utilized in the operational SAR classification algorithms developed by 
Finnish Institute of Marine Research. The method for deriving the  incidence angle 
dependence is applicable for any SAR sensor. There is a large variation of level ice  with 
changing weather conditions. A 1-D high-resolution thermodynamic snow/ice model 
generally helps to interpret changes in the 

°σ
°σ

°σ  time series. The modeled snow and ice surface 
temperature, cases of snow melting, and evolution of snow and ice thickness are related to the 
changes in . It was found out that the standard deviation of °σ σ°  for various ice types 
depends on the length of measurement. This may be utilized in the SAR image classification. 
It is not possible to resolve concentrations of thin new ice and all other ice types combined in 
the Baltic Sea using radiometer data as has been done for the Arctic seasonal ice zones. 

 

Keywords: Baltic Sea, microwave radiometry, radar polarimetry, radar scattering, remote 
sensing, sea ice, synthetic aperture radar. 
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Tiivistelmä 

Talvimerenkulku Itämerellä tarvitsee luotettavaa ja ajantasaista informaatiota Itämeren 
nopeasti muuttuvista jääoloista. Synteettisen apertuurin tutkan (SAR) kuvat ovat ainoa tapa 
tuottaa operatiivisesti tarvittavaa jääinformaatiota riippumatta päivänvalon määrästä ja lähes 
riippumatta sääolosuhteista. RADARSAT-1 ja ENVISAT SAR-tutkakuvien luokittelu-
algoritmit perustuvat tällä hetkellä lähinnä kuvien rakenteeseen, eikä merijään geofysiikkaa ja 
empiiristä tilastotietoa eri jäätyyppien sirontavasteista hyödynnetä kuin rajallisesti. SAR-
kuvien luokittelutulosten tulkitseminen on siten usein vaikeaa. Sekä itse luokittelutulokset, 
että niiden tulkinta parantuisivat, jos luokittelualgorimit hyödyntäisivät edellä mainittua 
tietoa. Satelliittiradiometrien kuvat eivät sovellu Itämeren jään operatiiviseen monitorointiin 
niiden karkean spatiaalisen resoluution vuoksi. Niillä kuitenkin voitaisiin validoida SAR-
kuvien luokittelualgoritmeja, koska ne ovat SAR-kuvista riippumaton datalähde Itämeren 
jääoloista. SAR- ja radiometrikuviin perustuvia merijäätuotteita voidaan merenkulun lisäksi 
hyödyntää myös Itämeren jään geofysikaalisissa tutkimuksissa. 

Tässä työssä on suoritettu perustutkimusta Itämeren jään mikroaaltokaukokartoituksessa, 
minkä tarkoituksena on tukea SAR- ja radiometrikuvien operatiivisten luokittelualgoritmien 
kehitystyötä. Tämä perustutkimus käsitti seuraavat aiheet: (1) eri jäätyyppien C- ja X-
kanavien sirontakertoimien statistiikka, (2) eri jäätyyppien L- ja C-kanavien polarimetristen 
diskriminanttien statistiikka, (3) sirontakertoimen mittauskulmariippuvuus RADARSAT-1 
SAR-kuvissa, (4) sirontakertoimen keskihajonnan ja mittausmatkan välinen riippuvuus ja 
hyödyntäminen jäätyyppiluokittelussa, (5) SAR-kuvien sirontakerroinaikasarjojen vertailu 
merijään termodynamiikkamalliin, ja (6) eri jäätyyppien kirkkauslämpötilojen statistiikka. 
Lisäksi työssä tehtiin kattava kirjallisuusselvitys aikaisemmasta tutkimuksesta Itämeren jään 
mikroaaltokaukokartoituksessa. 

Työssä saavutettiin seuraavia merkittäviä tuloksia. Eri jäätyyppien ja avoveden luokittelu ei 
ole mahdollista käyttäen sirontakerrointa, yhdensuuntais- ja ristipolarisaatiosuhdetta tai 
sirontakertoimen keskihajontaa. C-kanavan VH-polarisaation sirontakerroin suurella 
mittauskulmalla luokittelee eri jäätyypit hieman paremmin kuin mikään muu C- ja X-kanavan 
tutkaparametrikombinaatio. Merijään deformoitumisasteen estimointiin sopii paremmin VH-
polarisaation sirontakerroin kuin yhdensuuntaispolarisaation. Lumipeitteen kosteudella on 
suuri vaikutus sirontakerroinstatistiikkaan; erityisesti, kun lumipeite on märkä on 
sirontakerroinkontrasti eri jäätyyppien välillä pienempi kun lumipeite on kuiva. C-kanavan 
HH-polarisaation sirontakertoimen mittauskulmariippuvuus määritettiin tasaiselle ja 
deformoituneelle jäälle. Tätä hyödynnetään Merentutkimuslaitoksen operatiivisissa SAR-
kuvien luokittelualgoritmeissä. Mittauskulmariippuvuuden laskentamenetelmää voidaan 
käyttää mille tahansa SAR-tutkakuvalle. Muuttuvat sääolosuhteet aiheuttavat suuria 
muutoksia tasaisen jään sirontakertoimessa. Merijään termodynamiikkamalli yleensä auttaa 
selittämään muutoksia sirontakertoimen aikasarjassa. Sirontakertoimen muutokset ovat 
yhteydessä termodynamiikkamallilla laskettuihin lumen ja jään pintalämpötiloihin, lumen 
sulamisajankohtiin ja lumen ja jään paksuuden muutoksiin. Sirontakertoimen keskihajonnan 
havaittiin riippuvan etäisyydestä. Tätä riippuvuutta voitaneen hyödyntään SAR-kuvien 
luokittelussa. Itämerellä satelliittiradiometridatalla pystytään määrittämään vain merijään 
kokonaiskonsetraatio, toisin kuin arktisten merien kausiluontoisilla merijääalueilla, missä 
myös eri jäätyyppien konsentraatioiden määrittäminen on mahdollista. 

 

Avainsanat: Itämeri, kaukokartoitus, merijää, mikroaaltoradiometri, synteettisen apertuurin 
tutka, tutkapolarimetria, tutkasironta. 
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1 Introduction 
The Baltic Sea is a semi-enclosed brackish sea water basin in Northern Europe. The ice cover 
in the Baltic Sea usually begins to form in November, and has its largest extent between 
January and March (Seinä and Peltola 1991). The normal ice break-up starts in April and the 
ice melts completely by the beginning of June. The maximum annual ice cover ranges from 
12% to 100% of the whole Baltic Sea area, and the average is 50% (Seinä and Palosuo 1996). 
The ice in the Baltic Sea occurs as fast ice and drift ice. Fast ice occurs in the coastal and 
archipelago areas. Drift ice has a dynamic nature due to forcing by winds and currents. The 
motion of drift ice results in an uneven and broken ice field with distinct floes up to several 
kilometers in diameter, leads and cracks, brash ice barriers, rafted ice and ice ridges. The 
thickness of level ice is typically less than 1 m (Seinä and Peltola 1991), and the thickness of 
ice ridges is typically 5 to 15 m (Leppäranta and Hakala 1992). The salinity of the Baltic Sea 
ice is typically less than 2‰ depending on the ambient water salinity, growth conditions and 
thermal history of the ice, e.g. (Palosuo 1963, Kawamura et al. 2001). 

It is essential for winter shipping in the Baltic Sea to get reliable and up-to-date information 
of its rapidly changing ice conditions. Spaceborne synthetic aperture radar (SAR) images are 
the only way to produce this information operationally in fine scale (currently from 100 m to 
few hundred meters) independent of daylight and nearly independent of weather conditions. 
Identification of different ice types and open water in RADARSAT-1 and ENVISAT SAR 
images over the Baltic Sea ice has been studied e.g. in (Karvonen 2004, 2006), (Karvonen et 
al. 2005). Interpretation of the classification results is often difficult, because the algorithms 
utilize mainly the image structure and very little general geophysical information or empirical 
statistics of backscattering signatures of various ice types are utilized. The classification 
results should very likely improve with the addition of this information. 

Currently, spaceborne microwave radiometer data (e.g. NASA Advanced Microwave 
Scanning Radiometer (AMSR-E)) is not utilized in the operational monitoring of the Baltic 
Sea ice. The main reason for this is the very coarse resolution of the data, e.g. in the AMSR-E 
data the resolution is from 56 to 6.4 km. However, even single channel radiometer data is 
highly suitable for determination of sea ice concentration due to the large brightness 
temperature contrast between sea ice and water (Eppler et al. 1992). Radiometers can also 
map concentrations of new ice (i.e. thin ice) and all other ice types combined in the Arctic 
seasonal ice areas (Cavalieri 1994). Consequently, in the Baltic Sea, ice concentration maps 
based on radiometer data could help to validate classification algorithms of the SAR images. 
They could also show general sea ice conditions and their temporal evolution over the whole 
Baltic Sea area. To enable this, radiometer concentration algorithms for the Arctic Sea, e.g. 
NASA Team algorithm (Cavalieri et al. 1984, 1991), must be modified for the Baltic Sea ice 
conditions. 

Besides in ship navigation, sea ice products based on SAR and microwave radiometer data 
can also be utilized in the geophysical studies of the Baltic Sea ice. 

In order to support development of operational classification algorithms for radiometer data 
and, especially, for SAR data, basic research on microwave remote sensing of the Baltic Sea 
ice has been conducted in this work. The outcome provides the following contributions and 
improvements to the state of the art: (1) statistics of C- and X-band backscattering signatures 
of various ice types [P1], (2) statistics of L- and C-band polarimetric discriminants of various 
ice types [P2], (3) determination of radar incidence angle dependence of backscattering 
coefficient ( ) in RADARSAT-1 SAR images [P3], (4) determination of dependence 
between standard deviation and measurement length for 

°σ
°σ  signatures and its usability in sea 

ice classification [P4], (5) comparison between SAR °σ  time series and results of a 
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thermodynamic snow/ice model [P5], and (6) statistics of passive microwave signatures of 
various ice types [P6]. 

This thesis is organized as follows. Chapter 2 presents an overview of the Baltic Sea ice 
including its operational monitoring in Finland. Emphasis is on those aspects that are regarded 
relevant for this thesis. In Chapter 3 basics of the theoretical background of the microwave 
remote sensing of sea ice are presented. Measurement principles of microwave radiometers 
and radars are not discussed here. They can be found e.g. in (Ulaby et al. 1981, 1982). 
Chapter 4 presents a comprehensive review of previous research conducted in the microwave 
remote sensing of the Baltic Sea ice. Also those topics in which no further research was 
pursued in this thesis are included. Only recent studies in each topic were reviewed in case 
they included results from older studies by the same authors. In the end of Chapter 4, previous 
results relevant for this thesis are summarized. Chapters 5 and 6 present the research work 
conducted in this thesis. They start with the introduction of microwave sensors and data sets 
used along with definitions of general sea ice and snow cover classes used, and then proceed 
to the discussion of the results in [P1]-[P6]. Finally, Chapter 7 includes conclusions and 
recommendations for further research. 

This thesis is solely concentrated on microwave remote sensing of the Baltic Sea ice. Artic 
Sea and Antarctic Sea ice studies are not discussed here, except briefly in context with [P5], 
and the Baltic Sea ice results obtained here are not compared with them. This is due to the 
following unique combination of properties for the Baltic Sea ice: (1) only first-year ice 
occurs in the Baltic Sea, (2) salinity of the Baltic Sea ice is drastically lower than that of other 
ice covered seas, (3) periods of snow fall, rain, surface melt, and refreezing can frequently 
alternate even in mid-winter, and generate rapid variations in the ice and snow properties, and 
(4) formation of superimposed ice (refreezing of the surface melt water and freezing of 
rainfall) and snow-ice (freezing of slush from snow and ocean flooding of ice) often have a 
significant contribution to the total mass of sea ice, e.g. (Leppäranta and Seinä 1982, 
Granskog et al. 2004). 

The results of this thesis combined with an extensive review of previous studies serve as a 
summary on the studies of the Baltic Sea ice microwave remote sensing conducted up to 2006 
and help to plan further studies. 
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2 Overview of the Baltic Sea Ice 
In this chapter, a brief introduction to the properties of the Baltic Sea ice is given with an 
emphasis on the aspects regarded relevant for this thesis. Additionally, geophysical research 
work on the Baltic Sea ice, capability of satellite remote sensing to monitor the Baltic Sea ice, 
and operational sea ice monitoring in Finland are shortly reviewed. 

2.1 General Baltic Sea Ice Conditions 
The Baltic Sea (locating approximately 53°50´ - 64°50´N and 09°20´- 30°20´E) is a shallow, 
brackish-water, semi-closed sea connected to the North Sea through the Kattegat and 
Skagerrak. The Baltic Sea is a basin with a mean depth of 55 m and maximum depth of 459 
m. Between October and March the water column is well mixed, being homogenous to some 
60-80 m depth. The water in the Baltic Sea is brackish, with surface water salinity ranging 
from 12‰ in the south-west to 2-7‰ in the northern Baltic Sea and to fresh water at the 
mouth of large rivers. (Voipio 1981). 

The Baltic Sea freezes annually, and the maximum annual ice cover ranges from 12 to 100% 
of 420,000 km2 being on average 52%, 218,000 km2 (Seinä and Palosuo 1996). Ice seasons 
are typically classified into the following five classes: extremely mild, mild, average, severe 
and extremely severe winters; three classes are depicted in Figure 2.1. Large-scale 
atmospheric circulation patterns are significantly correlated with the ice conditions in the 
Baltic Sea (Jevrejeva 2001). During average and mild winters, warm air masses associated 
with westerly moving cyclones from the Atlantic dominate the Baltic climate, while in severe 
winters blocking anticyclonic patterns dominate (Jevrejeva and Moore 2001). Normally ice 
formation begins in the northern Bay of Bothnia in November, and in the Gulf of Finland in 
December (Seinä and Peltola 1991). The maximum annual ice extent occurs between January 
and March. During an average winter ice covers the entire Bay of Bothnia by mid-January, 
and at the time of the maximum ice extent, at the turn of February and March, the ice covers 
the Gulfs of Bothnia, Finland, and Riga. Some coastal regions further south also freeze, see 
Figure 2.1. The normal ice break-up starts at large in April and the ice melts completely by 
the end of May - beginning of June (Seinä and Peltola 1991). 

 
Figure 2.1 Classification of ice seasons in the Baltic Sea. Examples of (left) extremely mild 
(1994/95 with 68,000 km²), (middle) average (1993/94 with 206,000 km²) and (right) 
extremely severe (1986/87 with 405,000 km²) ice seasons (Grönvall and Seinä 1999). 

Ice in the Baltic Sea occurs as fast ice and drift ice. Fast ice exists in coastal archipelago 
areas. It grows typically only by thermodynamic and snow-ice formation processes. It is 
usually less than one meter thick (Seinä and Peltola 1991). Drift ice has a dynamic nature 
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being forced by winds and currents. Its movements can be large; in stormy wind conditions 
the ice field can move 20-30 km in a day. The motion results in an uneven and broken ice 
field with distinct floes up to several kilometers in diameter, leads and cracks, brash ice 
barriers, rafted ice and ridges. The thickness of ice ridges is typically 5 to 15 m and at 
maximum about 30 m (Leppäranta and Hakala 1992). The largest amount of ridging occurs in 
the Bay of Bothnia next to the fast ice boundary. Over large areas ridges account for an 
average of 10-30% of the total ice mass (Leppäranta and Hakala 1992). 

Despite low surface water salinity (from 2 to 7‰) in the northern Baltic Sea, the ice formed 
resembles that of sea ice with preferred horizontal c-axis in columnar ice, jagged grain 
boundaries, and a substructure within the grains associated with brine layers (Palosuo 1961, 
Kawamura et al. 2001). When the parent water salinity is higher than 0.6‰ then ice has these 
characteristics, and only in proximity of river estuaries the ice is basically freshwater ice 
(Palosuo 1961). The bulk ice salinities in the northern Baltic Sea are generally less than 2‰, 
and even lower depending on the ambient water salinity, growth conditions and thermal 
history of the ice, e.g. (Palosuo 1963, Kawamura et al. 2001). 

Periods of snow-fall, rain, surface melt, and refreezing can frequently alternate even in mid-
winter, and generate rapid variations in the ice and snow properties. Superimposed ice 
(refreezing of the surface melt water and freezing of rainfall) and snow-ice (freezing of slush 
from snow and sea flooding of ice) often have a significant contribution to the total mass of 
sea ice (Leppäranta and Seinä 1982, Kawamura et al. 2001, Granskog et al. 2004). 

2.2 Classification of the Baltic Sea Ice 
Baltic Sea ice can be divided into different types in the following ways: (1) surface structure, 
(2) stage of ice development and ice thickness, (3) ice concentration, (4) stage of melting,  
(5) texture classification which describes the structural properties of the ice matrix (Eicken 
and Lange 1989), and (6) genetic classification which describes the meteorological and 
oceanographic conditions that cause the growth of the ice (Eicken and Lange 1989). The ways 
(1)-(4) describe large scale structure of ice, whereas (5) and (6) describe fine scale structure of 
sea ice medium. These different classifications are described below. 

1. Surface structure 
Based on ice surface structure both fast ice and drift ice are divided into two basic ice type 
classes: level ice and deformed ice. Level ice is sea ice which has not been affected by any 
deformation and it is formed by thermal growth and formation of snow-ice and superimposed 
ice. Thicker level ice is originated from the initial ice freezing. Deformed ice is formed by ice 
motion which can be diverging, compacting or shearing, where rotational forces are present. 
Divergent motion produces leads of fractures in ice. Deformed ice produced by convergent 
motion in the sea ice is divided into following sub-classes (WMO 1989, Seinä et al. 2001): 
• rafted ice: Type of deformed ice formed by one piece of ice overriding another. 
• finger rafted ice: Type of rafted ice in which floes thrust ‘fingers’ alternately over and 

under the other. 
• ice ridge: A line or wall of broken ice forced up by pressure. May be fresh or weathered. 

The submerged volume of broken ice under a ridge is termed an ice keel. 
• ridged ice: Ice piled haphazardly one piece over another in form of ridges and walls. 
• hummocked ice: Hillocks of broken ice which has been forced upwards by pressure. May 

be fresh or weathered. 
• rubble field: An area of extremely deformed sea ice of unusual thickness formed during 

the winter by the motion of drift ice against or around a protruding rock, islet or other 
obstruction. 
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• brash ice: Accumulations of floating ice made up of fragments not more than 2 m across, 
the wreckage of other forms of ice. 

2. Stage of ice development and ice thickness 
Level ice is further divided according to its phase of development, which also indicate its 
thickness range, for example: new ice, dark nilas (less than 5 cm thick), light nilas or ice rind 
(5-10 cm), grey ice (10-15 cm), grey-white ice (15-30 cm), white ice - first stage (30-50 cm), 
white ice - second stage (50-70 cm), medium first year ice (70-120 cm) (WMO 1989). New 
ice a general term for recently formed ice where ice crystals are only weakly frozen together. 
Grey ice and grey-white ice are also called as young ice. 

Some other stages of ice development are (WMO 1989): 
• frazil ice: Fine spicules or plates of ice suspended in water. 
• grease ice: A later stage of freezing than frazil ice when the crystals have coagulated to 

form a soupy layer on the surface. Grease ice reflects little light, giving the sea a matt 
appearance. 

• slush: Snow which is saturated and mixed with water on land or ice surfaces, or as a 
viscous floating mass in water after a heavy snowfall. 

• shuga: An accumulation of spongy white ice lumps, a few centimeters across. 
• pancake ice: Predominantly circular pieces of ice from 30 cm to 3 m in diameter, and up 

to 10 cm in thickness, with raised rims due to the pieces striking against one another. It 
may be formed on slight swell from grease ice, shuga or a result of the breaking of ice 
rind, nilas or, under severe conditions of swell or waves, of grey ice. 

3. Ice concentration 
Sea ice concentration is described with the following classes (WMO 1989): compact ice 
(concentration is 10/10), very close ice (9/10 - < 10/10), close ice (7/10-8/10), open ice (4/10-
6/10), very open ice (1/10-3/10), open water (<1/10), ice free. 

4. Stage of ice melting 
Sea ice melting starts with melting of snow cover on ice. Melt water from snow, and in more 
advanced stages of melting also ice melt water, accumulates as puddles on ice surface (WMO 
1989). Surface puddles can melt through the ice cover creating so called thaw holes. Dried ice 
is sea ice from the surface of which melt water disappeared after the formation of cracks and 
thaw holes. During the period of drying, the ice surface whitens. The last stage of ice melting 
is called rotten ice which is sea ice with honeycombed structure and which is in an advanced 
state of disintegration. 

5. Texture classification 
The three main ice texture classes are (Eicken and Lange 1989): (1) columnar ice; elongated 
ice grains with size of 1-10 cm, brine inclusions are parallel layers within grains, (2) 
intermediate columnar/granular; grain size 1-10 cm, very irregular horizontal banding with 
crystals exhibiting a slight elongation in the vertical (growth) direction, brine inclusions are 
string of isolated oblong pockets, (3) granular ice; grain size < 1 cm, brine inclusions are 
irregular pockets or droplets between grains. 

6. Genetic classification 
The three ice genetic classes recognized by Eicken and Lange (1989) are: frazil, tranquil and 
disturbed congelation. Frazil ice is formed after a surface accumulation of ice crystals that 
have been formed in the upper part of the water column (dynamic conditions; ice is formed 
during turbulent conditions in supercooled water). Congelation ice (tranquil and disturbed) is 
formed by the freezing of seawater at the ice-water interface (static conditions) and has 
columnar texture. Granskog (2004) proposed to add sea ice with a meteoric ice contribution 
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(snow-ice and superimposed ice) as the fourth genetic ice class, since its formation 
mechanisms differ considerably from those of the other three classes (see Section 2.3). 

2.3 Effect of Snow Cover 
Snow usually accumulates rapidly on sea ice after its formation and has a great effect on sea 
ice evolution; for example, ice growth at the ice bottom is much reduced by the presence of 
snow, since the thermal conductivity of snow is much smaller than that of sea ice. Snow 
undergoes constantly metamorphic processes that change its properties. Snowpack can deform 
very rapidly especially during the melt season and due to rainfall. The percolating water in the 
snowpack can refreeze deeper in the snow forming ice lenses and hard crust layers, or 
contribute to a slush layer on sea ice. Wind redistribution of snow forms greatly variable snow 
thickness, even in small spatial scales. Ice ridges and other deformations act as obstacles for 
the wind field and greatly increase the spatial variation of snow thickness. 

In the presence of liquid water, the snow layer may contribute to the ice thickness via a snow-
to-ice transformation. This takes place by two processes: (1) A heavy snow loading on top of 
the ice may cause a negative freeboard and subsequently sea water flooding of the ice surface 
and basal snow. A salty slush layer may be generated that subsequently freezes above the 
original ice cover. This is called snow-ice formation due to ocean flooding. (2) Melt water 
from snow or rainfall may percolate downwards and refreeze above the original ice cover. 
This process is called superimposed ice formation. Besides snow surface melting, there can 
also be snow internal melting in spring time caused by the large amount of solar radiation 
penetrating into the snowpack. This internal melting is sensitive to the snow extinction 
coefficient. e.g. (Cheng et al. 2003). Generally, (1) and (2) are also called as meteoric ice, i.e. 
part of the sea ice cover which contains atmospherically derived ice. 

The physical properties of snow-ice differ from those of congelation ice. Snow-ice includes 
more air bubbles and is very distinctive from the coarser columnar crystal structure of 
congelation ice. However, it is difficult to distinguish between frazil ice and snow-ice crystal 
structure. Brine inclusions in snow-ice are typically spherical droplets at grain junctions. The 
mechanical properties of snow-ice are also quite different from those of congelation ice, 
snow-ice being much weaker. (Saloranta 2000). 

Superimposed ice has distinctive polygonal granular structure, e.g. (Kawamura et al. 2001). It 
usually has a very low salinity. However, if superimposed layers are flooded with seawater 
their salinity can increase, and this may destroy the texture of the ice, making its origin hard 
to recognize (Granskog et al. 2004). 

The contribution of snow-ice and superimposed ice to the total ice thickness is usually 
significant. First studies indicated that in the northern Baltic Sea from December to February, 
snowfall accounts on average for 25-45 mm equivalent water per month (Kolkki 1969), and 
the snow-ice may contribute to some 1/3 of the total ice thickness (Leppäranta and Seinä 
1982). Measurements conducted in the Gulf of Finland in winter 1998/99 indicated that as 
much as 43-55% of the total coastal landfast ice was snow-ice (Kawamura et al. 2001). 
Granskog et al. (2004) studied properties of landfast ice in the Gulf of Finland during three 
winters in 1999-2001 and found out that the superimposed ice contributed up to 20% of the 
total ice mass in a seasonal scale. The contribution of meteoric ice varied from 0 to 35% by 
mass, depending on season and year. During a four week study period of spring melt-freeze in 
2004, a 15 cm snow layer on landfast ice was transformed into 7 cm thick layer of 
superimposed ice (Granskog et al. 2006). The total formation of the superimposed ice during 
the whole ice season was 14 cm (22% of the total ice thickness). 
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2.4 Typical Structure of Level Ice and Deformed Ice 
Several studies of the textural characteristics of level ice have shown a large variability in ice 
structure and the contribution from different genetic ice types to the total ice thickness 
(Granskog 2004). Structurally, the level landfast ice cover can roughly be divided into a two 
layer medium, with a granular upper layer and a columnar ice bottom layer (Kawamura et al. 
2001). The upper layer is partly composed of snow-ice or superimposed ice and the remaining 
is frazil ice. Often also a third ice type is present, the transition ice (or intermediate 
columnar/granular), e.g. (Weeks et al. 1990). Transition ice may be associated with nearby 
leads, ice deformation and a rough hydrodynamic regime (Weeks et al. 1990). 

Properties of deformed ice in a vertical space have not been studied much in the Baltic Sea. In 
a few studies the structure of ice ridges has been investigated, e.g. (Leppäranta and Hakala 
1992). Typically an ice ridge consists of ice, loose ice blocks, air voids and slush. In six ice 
ridges measured by Leppäranta and Hakala (1992) the porosity (fraction of voids) varied from 
23 to 33%. 

2.5 Ice Salinity and Density 
When seawater freezes, most impurities are rejected from the ice lattice, resulting in plates of 
pure ice. The plates originate as dendrites with tips protruding into the seawater. The plate 
width can vary from a few tenths of a millimeter to 1 mm and is dependent on the ice growth 
rate. The brine is trapped between these tips. The salinity of sea ice at a given time is 
governed by initial brine entrapment and by desalination processes such as brine pocket 
migration, brine expulsion, gravity drainage and flushing. Initial brine entrapment increases 
with increasing ice growth rate and seawater salinity. When sea ice warms, disconnected brine 
inclusions coalesce into vertical channels that can lead to redistribution, drainage and 
desalination of the ice. Quantitative information on desalination processes in the Baltic Sea 
ice is still limited. For ice with a bulk salinity of 1‰ temperatures as high as -1ºC are needed 
for to have brine volumes large enough (over 5‰) for the Baltic Sea ice to become permeable 
(Leppäranta and Manninen 1988). (Granskog 2004). 

Sea ice salinities and densities, both bulk values and profiles, have been measured since the 
1950’s in many field campaigns. The bulk ice salinities in the northern Baltic Sea are 
generally less than 2‰, and even lower depending on the ambient water salinity, growth 
conditions and thermal history of the ice, e.g. (Palosuo 1963, Kawamura et al. 2001). In a 
three year study of the properties of landfast ice in the Gulf of Finland Granskog et al. (2004) 
observed that the bulk salinity of landfast ice is on average 10-20% of the parent seawater 
salinity. In winter, the bulk ice salinity changes are insignificant, while in spring the salinity 
decreases rapidly from winter values to almost zero. Flooding and snow-ice formation 
produce large and rapid salinity variations in the uppermost parts of the ice cover. For landfast 
ice a representative instantaneous winter time salinity profile is close to uniform, with slightly 
higher values at the surface (Weeks et al. 1990). 

In a two-year dielectric study of sea ice, the bulk ice density of samples taken from the Gulf 
of Finland near Helsinki was 0.84 g/cm3, and 95% of those samples had a density between 
0.78 and 0.90 g/cm3 (Hallikainen 1983). Carlström and Ulander (1995) reported ice surface 
densities from 0.81 to 0.90 g/cm3 for level ice in the Bay of Bothnia. 

2.6 Geophysical Research Work on the Baltic Sea Ice 
Sea ice cover on the Baltic Sea largely modifies or even eliminates the ocean-atmospheric 
heat, radiation and momentum fluxes because the surface properties of the ice, especially its 
albedo, temperature and roughness, are different from those of open water. The ocean-
atmosphere heat exchange is especially very sensitive to the thin portion of the sea ice 
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thickness distribution (Maykut 1978, 1982). Ice cover also limits the exchange of gases and 
particulates between the ocean and atmosphere. The release and absorption of latent heat due 
to the freezing and melting of ice may alter the seasonal air temperature cycle and induce 
local climate. Ice cover contributes to salt and fresh water budgets as freezing at the ice 
bottom rejects salt, increasing the ocean salinity, whereas melting of sea ice will decrease the 
ocean surface salinity. In addition, the sea ice cover restricts wintertime navigation in the 
Baltic Sea. 

For studying above mentioned geophysical effects of the Baltic Sea ice cover many sea ice 
parameters are needed, for example: (1) general history of ice season; e.g. dates of freezing 
and break-up of permanent ice cover, time history of ice extent, (2) ice concentration and 
movement of drift ice, (3) ice thickness, (4) snow/ice albedo, (5) snow parameters; thickness, 
density, wetness, grain size, (6) ice salinity and density, (7) ice surface roughness, i.e. degree 
of ice deformation. For marine navigation the most important sea ice parameters are ice 
thickness, ice concentration, locations and sizes of ice deformations like ice ridges and rubble 
fields, and locations of leads. For geophysical studies typically time series of sea ice data are 
required, whereas for marine navigation instant values of sea ice parameters and their near-
future predictions are needed. 

Studies related to the Baltic Sea ice have been conducted over 100 years, first motivated by 
the development of winter navigation and later including geophysical studies on the Baltic 
Sea ice properties and climatology. Since 1950’s studies have focused on large scale 
problems, such as sea ice climatology and dynamics, sea ice thermodynamics, sea ice 
ecology, thickness distributions of level ice and deformed ice, ice ridge statistics (e.g. ridge 
density), mechanical properties of sea ice (e.g. shear strength of ridges), and on sea ice 
properties particularly relevant for microwave remote sensing (e.g. surface roughness). In 
recent years, theoretical geophysical modeling of sea ice has included the following topics: 

1. Seasonal sea ice climate, e.g. (Haapala 2000). 
2. Sea ice dynamics, e.g. (Zhang 2000). 
3. Sea ice thermodynamics and air-ice interaction, e.g. (Cheng 2002). 

These studies are mainly focused on the numerical model constructions, validations and to 
better reproduce sea ice physics with numerical modeling on the basis of seasonal and 
synoptic time scales. In general, the large scale ice conditions, like ice extent, in the Baltic 
Sea are well known, but little is still known about the small scale properties of the ice, the 
processes during initial ice formation, and the temporal development of the ice properties 
(Granskog 2004). The main reason for this is the need of time consuming and expensive 
logistical efforts for studying sea ice processes in harsh field conditions. 

A review on the operational monitoring of the Baltic Sea ice in Finland is presented in 
Section 2.8. 

2.7 Capability of Satellite Remote Sensing to Monitor Baltic Sea Ice 
Satellite remote sensing can produce several sea ice parameters for both geophysical studies 
and marine navigation. Only microwave instruments, SAR-radars, scatterometers and 
radiometers, can produce sea ice information operationally independent of daylight and nearly 
independent of weather conditions. However, only SAR-radars have very fine resolution (10 
to 100 m). The resolution of current radiometer data is at best around only 6 by 4 km (AMSR-
E 89 GHz channel). The finest resolution of scatterometer data is around 12.5 km. In the 
following is a list of the Baltic Sea ice parameters which can be estimated with remote 
sensing data (Baltic Sea ice references mentioned when applicable), for details see Chapter 4: 
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• Ice extent and ice concentration: SAR (Karvonen et al. 2005), scatterometer (Grandell 
et al. 1996), microwave radiometer (Grandell and Hallikainen 1994, Grandell et al. 
1996); optical and thermal infrared images, but only under cloud-free conditions. 

• Ice thickness: SAR (Karvonen et al. 2003, 2004), (Similä et al. 2006) and possibly also 
radar altimetry (through freeboard estimation). 

• Ice types: SAR e.g. (Karvonen 2004); possibly some ice types (e.g. new ice, snow 
covered ice) with optical images. 

• Ice dynamics: time series of SAR images (Sun 1996, Leppäranta et al. 1998). 

• Small horizontal deformations in level ice: SAR repeat-pass interferometry with small 
baseline when ice is stationary (Dammert et al. 1998). 

• Ice topography: SAR repeat-pass interferometry with large baseline when ice is 
stationary and no ice deformation occurs (Dammert et al. 1998). 

• Ice surface temperature: thermal infrared images under totally cloud-free conditions. 

• Ice surface albedo: broad band optical and infrared reflectance data with multiple 
viewing and irradiance angles. 

Remote sensed sea ice data can be used in the development and validation of geophysical 
models. Assimilation of remote sensed data with geophysical models should increase the 
accuracy of various sea ice products, e.g. ice extent, movement and thickness. This has not yet 
been conducted operationally for the Baltic Sea ice. 

2.8 Operational Monitoring of the Baltic Sea Ice in Finland 
The marine transportation in the Baltic Sea in year is about 700 million tons, some 40% of 
which occurs during winter. The winter time traffic in the Baltic Sea is the largest of all ice 
covered seas. In Finland almost 90% of foreign trade is transported by sea. Annual turnover in 
2004 was 95 million tons. During the winter months there are more than 25,000 port-calls in 
Finnish harbors transporting about 40 million tons of goods. The increase of marine 
transportation in Finland is around 3-4% per year. In 2001 the number of vessels sailed in the 
Gulf of Finland was 38,000 and in 2015 this is expected to increase to 53,000 vessels. (Seinä 
et al. 2006). 

Winter navigation in Finland is made possible by the use of eight icebreakers, ice-
strengthened vessels, restricting navigation, and by operational monitoring of the Baltic Sea 
ice cover. Navigation is restricted by closing half of the harbors for the winter and giving 
assistance only to vessels suitable for ice navigation. Powerful, ice-strengthened vessels can 
break through ice up to 80 cm thick, but they are not capable of navigating through ridges and 
heavy brash ice barriers without icebreaker assistance. On an average ice season ice hampers 
ship navigation 6-7 months in the Bay of Bothnia and 3-4 months in the Gulf of Finland. 
Under normal ice conditions the sailing time from the ice-edge to e.g. the northern Bay of 
Bothnia is one day (400 nautical miles), but under severe conditions it can extend to nearly 
one week. (Seinä et al. 2006). 

Finnish Institute of Marine Research (FIMR) has been responsible for the sea-ice information 
service in Finland since 1918. The Service, called Finnish Ice Service (FIS), operates under 
Department of Physical Oceanography, and it is intended to meet the needs of national and 
international shipping and activities where sea-ice information is required. (Seinä et al. 2006). 

FIS issues daily during the ice season the following sea ice products: ice chart, ice report and 
ice movement forecast for the next 54 hours. Ice chart is the most important and widely used 
ice information product of FIS. The ice charts are based on Earth Observation (EO) data 
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(spaceborne optical and SAR images), reconnaissance flights (rarely), and ground truth data 
from ships, icebreakers and coastal ice stations. The ice chart production is performed mostly 
by subjective methods by updating previous chart with new input data. FIS also transmits 
digital satellite images to the operative Finnish and Swedish icebreakers daily in the ice 
season. (Seinä et al. 2006). 

Optical satellite data have been used in FIS since 1968 (Seinä et al. 1997). Currently, optical 
satellite data from NOAA Advanced Very High Resolution Radiometer (AVHHR; since 
1981) and NASA Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS, 
since 2005) sensors are used. Both sensors have visible and thermal infrared channels. The 
best spatial resolution of MODIS is 250 m and the resolution of AVHRR is 1.1 km. When a 
satellite orbit goes over the Baltic Sea, both AVHRR and MODIS images usually cover the 
whole Baltic Sea. Unfortunately, the use of optical images is heavily restricted by cloud cover 
and also by short days during the early and mid-winter. 

The use of spaceborne SAR started in 1992 with ERS-1 SAR, first in experimental level and 
operationally in 1994 (Seinä et al. 1997). In Sweden and Germany operational use started 
already in 1992. The major advantages of SAR images compared to optical images are their 
independence on the amount of daylight and cloud cover, better resolution and better 
information content on sea ice cover, notably degree of ice deformation can be interpreted 
from the SAR images. The spatial resolution of ERS-1 SAR in operational use was 100 m and 
the image size 100 by 100 km. The small image size was the major drawback of the ERS-1 
images; one image did not even cover the Bay of Bothnia. In 1998 RADARSAT-1 ScanSAR 
Narrow images replaced ERS-1/2 SAR images and since 2003 ScanSAR Wide images have 
been used. The RADARSAT-1 ScanSAR Wide images also have a resolution of 100 m in 
operational use, but their image size is around 500 by 500 km and, thus, one image covers e.g. 
the whole Bay of Bothnia or Gulf of Finland (the size of ScanSAR Narrow images is 300 by 
300 km). Since 2004 also ENVISAT Wide Swath images (swath width 420 km) have been 
used to supplement RADARSAT-1 images. In 2006, the total number of RADARSAT-1 and 
ENVISAT images used by FIS was 163 and 82, respectively. 

The SAR images are analyzed both visually and by automatic classification algorithms. FIMR 
has been developing classification algorithms since 1987. Current SAR products are high-
resolution ice thickness chart (based on combination of SAR and ground truth data) and ice 
deformation chart (discrimination of various ice types). The SAR based ice thickness chart is 
delivered to the icebreakers. Classification algorithms for SAR images are reviewed in 
Chapter 4.5. 

SAR images and products and FIS ice charts provide also information for the geophysical 
studies of the Baltic Sea ice. An example of FIS ice chart and SAR image for the same day is 
presented in Figures 2.2 and 2.3. Visual inspection of the SAR images shows locations of thin 
ice (black areas, i.e. low intensity of backscattered radar wave), deformed ice (bright areas, 
i.e. high intensity), location of ship channels and leads (bright thin curves in the image), and 
in this case clearly the location of the fast ice boundary. Backscattering intensity of open 
water depends highly on wind speed and fetch. It can vary from very low intensity (low wind 
speed) to very high (high wind speed). However, textural variation of intensity enables 
typically visual discrimination between open water (low texture) and deformed ice (typically 
high texture). Typically, even visual analysis of the SAR image gives more information of the 
sea ice cover than the FIS ice chart. 
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Figure 2.2 Finnish Ice Service ice chart on March 24, 2004. 

 
Figure 2.3 ENVISAT Wide Swath Mode image over the Bay of Bothnia on March 24, 2004, 
© European Space Agency. The image was rectified to the Finnish Uniform Coordinate 
System with 150 m pixel size. 
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3 Theoretical Background of Microwave Remote Sensing 
of Sea Ice 

3.1 Backscattering Coefficient 
Monostatic radar measurements (i.e. the same antenna is used in transmitting and receiving) 
of natural targets, like sea ice, are described using a quantity called backscattering coefficient 

 (Ulaby et al. 1982): °σ
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where   is the radar incidence angle measured from vertical direction, 0θ

 ,  are the received and transmitted polarizations, respectively; in remote sensing 
vertical (V) and horizontal (H) polarizations are mostly used, 
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  is the scattered field and  is the incident field, s
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 A  is the area illuminated by radar, 

 R  is the range between target and radar. 

Equation (3.1) shows °σ  as the ratio of the statistically averaged total power backscattered by 
an equivalent isotropic scatterer to the product of the incident power density and the 
illuminated area (Ulaby et al. 1982). It is not the ratio of the total backscattered power to the 
incident power. 

The area illuminated by a radar, i.e. the radar spatial resolution, is in the simplest case 
equivalent to the area illuminated by the 3 dB beamwidth of the antenna. In case of the SAR 
radars it is determined by the length of the synthetic aperture in azimuth direction (along 
flight track) and by radar pulse length in range direction (across track direction). The range R  
is usually measured by the radar instrument itself, typically by the time delay between a 
transmitted and a received radar pulse. 

Measured  values are strongly modulated by the coherent fading phenomena. They are also 
corrupted by radar system noise. The effects of fading and noise on the measured 
backscattered power 

°σ

P  are statistically modeled as (Rignot and Kwok 1993): 

[ ]FnTIP += , (3.2)

where I  is the backscattered power from the target, 

  is the additive radar system noise power, n
 T  is the texture random variable which represents the natural spatial variability of the 

backscattered power I , [ ] 1=TE , 
  is the fading random variable characterized by a normalized -distribution with 

 degrees of freedom (
F 2χ

N2 N  is the number on independent samples), [ ] 1=FE , 
. ( ) NFVar /1=

The number of independent samples N  in each single °σ  value depends on the radar system 
parameters, e.g. on radar frequency bandwidth. N  can be increased by spatial averaging of 

 data, but then data spatial resolution decreases. °σ
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The standard deviation of texture  is (Rignot and Kwok 1993): sT
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where  is the signal-to-noise ratio. If the target is homogeneous then  is zero, and 
variation in the measured average  ( ) is only caused by the random fading. Standard 
deviation of  from a homogeneous target is (Ulaby et al. 1982): 
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Measured  values are usually expressed in decibel scale: °σ

[ ] ( )°σ⋅=°σ 10log10dB . (3.5)

Standard deviation of °σ  in dB scale is obtained from the Taylor-series expansion of °σ  in 
dB-scale at an interval of about { }oo σ=σ E , which leads to (Pulliainen 1994): 

( )[ ] ( )
( )o

o
o

mean
std

10ln
10dBstd

σ
σ

≈σ . (3.6)

The simplest remote sensing radars measure the backscattered power only at one frequency 
and one polarization which is one of the following four linear polarization combinations: HH, 
VH, VV, HV. More advanced radars have two (dual-polarization radar) or all four (quad-
polarization) polarization combinations. Typically dual polarization radars have one co- and 
one cross-polarization channel, e.g. HH and VH. Quad-polarized radars have basically one 
extra channel as in backscattering HV- and VH-polarized °σ ’s are equal due to the reciprocity 
theorem. The most advanced radars, polarimetric radars, measure both amplitude and phase of 
the backscattered field at all four linear polarization combinations. The basics of radar 
polarimetry are presented in Chapter 3.2. Dual-, quad- and polarimetric radars may also 
operate at several frequency bands; a typical combination is C- and X-band or L- and C-band. 

Theoretical backscattering models for sea ice are available in the literature, e.g. (Ulaby et al. 
1982, 1986), (Fung 1994). These models are used to (1) study the total sea ice  and its °σ °σ  
components (e.g. ice surface and volume scattering) as a function of various radar and sea ice 
geophysical parameters (e.g. incidence angle, ice surface roughness), (2) interpret the 
behavior of empirical sea ice  data; e.g. multi-incidence angle data or time series  data, 
and (3) develop classification algorithms for 

°σ °σ
°σ  data. The simplest models only model the co-

polarized single scattering , see e.g. (Fung 1994). More advanced models take into account 
multiple scattering events within the snow and ice surfaces and volumes. The multiple 
scattering is more difficult and laborious to model than the single scattering. The cross-
polarized  in backscattering direction is caused only by multiple scattering events. In case 
of co-polarized , the multiple scattering events may be negligible compared to the single 
scattering ones. Generally, single scattering models provide the identification and comparison 
of various scattering mechanisms, like ice surface and volume scattering, whereas multiple 
scattering models give only the total 

°σ

°σ
°σ

°σ , but are more accurate. In the following, a general 
single backscattering model for snow covered level sea ice is presented according to (Fung 
1994). The model includes contributions from (see Figure 3.1): 
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1) snow surface 
2) snow volume 
3) snow bottom surface – snow volume interaction 
4) sea ice surface 
5) sea ice volume 
6) sea ice bottom surface 
7) sea ice bottom – sea ice volume interaction 

The last two terms are optional depending whether the radar wave is assumed to reach the sea 
ice bottom surface or not. 

Z  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Backscattering mechanisms for snow covered level sea ice. The scattering paths 
correspond to the above mentioned terms. 0θ  is the radar incidence angle and  and 1tθ 2tθ  are 
the transmitted angles in snow and ice volumes, respectively. 

The total backscattering coefficient for snow covered sea ice according to the first-order 
solution of the radiative transfer equation is (Fung 1994): 
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where  are the snow surface, sea ice top and bottom surface backscattering 
coefficients, 

ooo  , , wsisss σσσ

  and  are the snow and sea ice volume backscattering coefficients, o
svσ o

ivσ

  and  are snow and sea ice surface-volume interaction scattering coefficients, o
ssvσ o

isvσ

  and  are the transmitted angles in snow and ice volumes, 1tθ 2tθ

1T  and  are the Fresnel power transmission coefficients across snow and ice top 
surfaces, 
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  and  are one-way power loss factors through snow and sea ice layers: 1L 2L

)cos/exp( txxexx dL θκ−= , (3.8)

where subscript x  is 1 or 2,  is the volume extinction coefficient; eκ eκ  = volume scattering 
coefficient  + volume absorption coefficient sκ aκ , 

  is the volume thickness. d

The surface-volume interaction scattering coefficient is sum of two contributions: (1) first 
volume scattering followed by reflection at the bottom surface, and (2) first reflection at the 
bottom surface followed by volume scattering. 

Transmission across top boundaries and reflection at bottom boundaries are accounted for 
using Fresnel power transmission (T ) and reflection coefficients ( R ) (coherent case with 
plane surface) (Fung 1994). T  and R  are functions of snow and sea ice effective (bulk) 
dielectric constants ( ). The extinction coefficient rε eκ  is obtained either by a semi-empirical 
or pure empirical model or by calculating the absorption coefficient aκ  from the effective rε  
and the scattering coefficient  using a theoretical volume scattering model. sκ

The effective  of sea ice can be understood in terms of a physical mixing theory which 
explains  as a function of the permittivity of sea ice components: ice, gas and brine, and of 
the shape of the gas and brine inclusions. The effective 

rε

rε

rε  of snow is a function ice, air and 
liquid water (if present)  and the shape of the ice and water inclusions. This low-frequency 
approximation neglects the effects of scattering which means that the modeled  is not 
dependent on the sizes of the inclusions. Simple low-frequency mixing models for snow and 
sea ice  have been developed by combining theory and empirical 

rε

rε

rε rε  data. Hallikainen et al. 
(1986) presents snow effective  as a function of snow density and volumetric liquid water 
content (wetness). Hallikainen and Winebrenner (1992) show sea ice effective  as a 
function of brine volume fraction which in turn is a function of sea ice density, salinity and 
temperature. 

rε

rε

Surface backscattering components in (3.7) are functions of surface rε  and surface roughness 
characterized by surface rms roughness , correlation length  and autocorrelation function. 
Currently, the best choice for calculating surface backscattering is the integral equation 
method (IEM) model presented in (Fung et al. 1992, Fung 1994). The IEM model assumes 
scattering surface to be a Gaussian stationary random process, i.e. the properties of any given 
surface area are statistically identical to any other areas or to the whole. IEM has separate 
equations for single and multiple scattering contributions. The single scattering IEM model at 
co-polarization (simplest case) is (Fung et al. 1992, Fung 1994): 
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where k  is the wave number, 0cosθ= kkz , 0sin θ= kkx , and = HH- or VV-polarization, pp
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where  and  are the Kirchhoff and the complementary field coefficients presented in 
Appendix 4B of (Fung 1994), 

ppf ppF
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and  is the Fourier transform of the th power of the surface autocorrelation 
function 

)(nW n
( )ζξρ , . If the surface is isotropic, then  is: )(nW
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Commonly used surface autocorrelation functions are Gaussian, exponential and transformed 
exponential functions (Fung 1994). For example, the Gaussian function and its  are 
(Fung 1994): 
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The validity limits of the IEM model are (Fung 1994): 

2<ks , 

2<ks ( )( ) rkLks ε′< 2.1 , Gaussian ρ , 

( )( ) rkLks ε′< 6.1 , non-Gaussian ρ . 

(3.14)

The first limit is for the validity of the single scattering approximation and the second for 
approximating the local incidence angle in  and  with the radar incidence angle.  
and  depend on the Fresnel reflection coefficients which in turn depend on the dielectric 
contrast. 

ppf ppF ppf

ppF

Volume scattering in snow is caused by ice crystals. In sea ice volume scattering is modeled 
in literature either by brine pockets or by gas bubbles depending on the sea ice type. In dense 
new ice the brine pockets are assumed to be the source of volume scattering, whereas in older 
less dense, less saline ice types, like multiyear ice, the source is gas bubbles. For calculating 
volume scattering there are several models presented in literature. The simplest model is the 
Rayleigh single scattering model which assumes that the scatterers are very small compared 
with the incident wavelength and each scatterer is in the far field of others (Fung 1994). In 
this model the strength of volume scattering depends on the size of scatterers, volume fraction 
of scatterers (i.e. number of scatterers in unit volume) and on the scatterer  contrast to the 
host media. The fraction of gas bubbles in sea ice depends, like brine volume fraction, on sea 
ice density, salinity and temperature. More advanced models allow close spacing between 
scatterers (i.e. scatterers are in the near field of each other) and take into account the shape of 
the scatterers, the correlation between the positions of the scatterers in the host medium and 
multiple scattering. 

rε

In summary,  of snow covered level sea ice depends on the following radar, snow and sea 
ice parameters when it is assumed that the scattering contribution from ice-ocean interface is 
negligible: 

°σ

 

 16



1. Radar parameters: frequency, incidence angle and polarization. 

• Incidence angle dependence of °σ  comes mainly from the incidence angle 
dependence of the Fresnel reflection and transmission coefficients. 

• Frequency, i.e. radar wavelength, has an large effect on °σ  as the surface and volume 
scattering components depends on the relative size of the roughness parameters and 
scatterer sizes on the wavelength. 

• The difference between co-polarizations HH and VV is mainly due to difference 
between the Fresnel reflection coefficients at H- and V-polarization in case of the 
surface scattering and due to the non-spherical scatterer shape in case of the volume 
scattering. 

• Differences between co- (HH and VV) and cross-polarization (HV or VH) are mainly 
due to the different dominating scattering mechanisms: single scattering at co- and 
multiple at cross-polarization. 

2. Dielectric characteristics of snow and sea ice. 
• Bulk  of snow and sea ice determine the volume absorption coefficient . rε aκ

2.1 Bulk  of snow depends on rε

− snow density 
− snow wetness 
− snow temperature, only in the case of dry snow 

2.2 Bulk  of sea ice depends on rε

− brine volume fraction which depends on 
− sea ice density 
− sea ice salinity 
− sea ice temperature 

•  of a scatterer is a one of the parameters determining the volume scattering 
coefficient . Scatterers in snow are ice crystals. In sea ice they are either air bubbles 
or brine pockets. 

rε

sκ

2.3  of ice crystal depends on rε

− temperature 
2.4  of brine pockets depends on rε

− brine salinity which depends on 
− parent sea water salinity 
− temperature 

3. Geophysical characteristics of snow and sea ice. 
• Surface and volume backscattering components depend greatly on the following snow 

and sea ice parameters: 
3.1 Snow and sea ice small scale surface roughness characterized by surface rms 

roughness, correlation length and autocorrelation function (small scale roughness 
means here rms roughness values from few mm to few cm). 

3.2 Size and volume fraction of ice crystals in snow. Volume fraction depends on 
− snow density and wetness 
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3.3 Size and volume fraction of gas bubbles or brine pockets in sea ice. Volume fractions 
depend on 
− sea ice density, salinity and temperature 

3.4 If sea ice is deformed, i.e. sea ice has also large scale surface roughness, like ice 
ridges, also the deformation features contribute to the level of °σ . 

Theoretical backscattering models developed for the Baltic Sea level ice and deformed ice are 
reviewed in Chapter 4.3. 

3.2 Radar Polarimetry 
In the following only those topics of radar polarimetry relevant for the study conducted in this 
thesis are presented. Only basic polarimetric discriminants were studied in [P2]. 

A polarimetric SAR typically transmits H- and V-polarization alternately and receives the 
backscattered field at both H- and V-polarization, thus recording all combinations of these 
two linear polarizations: HH, VH, VV, HV. Both amplitude and phase of the scattered signal 
is measured. The measurements are represented by a complex backscattering matrix S  which 
connects the received electric field to the transmitted field, e.g. (Touzi et al. 2004): 
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where r  is the distance from the center of the illuminated area to the point of observation. 

The unknown complex backscattered field is sampled in two orthogonal directions which 
completely characterize it. The backscattered field from a distributed target (e.g. sea ice) is a 
vector sum of waves with a variety of polarizations from numerous randomly positioned 
scatterers. The polarimetric SAR provides a measure of the mean field components of the 
resulting partially polarized wave in each image pixel, i.e. the measured  matrix for one 
pixel consists of the coherent superposition of the individual  matrices of all scatterers 
located within the pixel. In backscattering 

S
iS

VHHV SS =  due to the reciprocity theorem and, 
thus, there are five independent parameters in : three amplitudes (at HH, HV and VV 
polarizations) and two phase parameters: co- and cross-polarization phase differences 

 and 

S

VVHH φ−φ HVHH φ−φ . Each element of S  is a function of frequency, incidence angle 
and target electrical and physical properties. e.g. (Touzi et al. 2004, Lopez-Martinez et al. 
2007). 

The  matrix is only able to characterize the so-called coherent or pure scatterers. It cannot 
be employed to characterize, from a polarimetric point of view, the so-called distributed 
scatterers, i.e. natural remote sensing targets. This type of scatterers can be only characterized 
statistically due to the presence of fading noise. Since fading noise must be reduced, only 
second order polarimetric representations can be employed to analyze distributed scatterers. 
These second order descriptors are the average covariance 

S

C , coherency T  and Stokes 

M  matrices. All these matrices consist of linear combinations of the cross-products of the 
four basic elements of the matrix . These linear combinations and their correlations are 
closely related to the physical properties of the scattering medium. These matrices can be 
spatially averaged and can also be presented in the ground range coordinate system, whereas 
the  matrix is always presented in slant range and it cannot be averaged. 

S

S C  is directly 

related to the system measurables whereas T  is closer related to the physical and 
geometrical properties of the scattering process, and thus allows a better and direct physical 
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interpretation. Multilook SAR data are generally provided under the M  or C  matrix 

format. For example, the C  matrix is, e.g. (Touzi et al. 2004, Lopez-Martinez et al. 2007): 

⎥
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In the following, various polarimetric discriminants are shortly described. They can be 
computed for every pixel in a polarimetric SAR image, but are often averaged over groups of 
pixels to reduce the effect of fading. The polarimetric discriminants are used for SAR image 
classification and interpretation of target geophysical properties and scattering mechanisms. 

Total power or span in the backscattered field is, e.g. (Drinkwater et al. 1992): 

222 2 HVVVHH SSSSpan ++= . (3.17)

Total power is also the sum the diagonal elements of C , T  and M  matrices. 

The co-polarization ratio  is defined as, e.g. (Drinkwater et al. 1991): coR
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According to the IEM surface scattering model (Fung 1994) the co-polarization ratio depends 
on the surface roughness and the dielectric constant of surface. It is below 0 dB in the 
presence of pure top surface scattering and it decreases with increasing incidence angle. With 
a combination of top surface and volume scattering  is also below 0 dB, but now the 
incidence angle dependence decreases at large angles due to the dominating volume 
scattering. When the surface roughness or the strength of the volume scattering increases,  
approaches 0 dB. However, the higher the dielectric constant of the surface is, the smaller is 

 due to the Brewster angle effect.  can be over 0 dB due to the either strong surface-
volume interaction (Fung 1994) (e.g. there is scattering interaction between ice volume and 
ice-water interface) or double bounce scattering (i.e. dihedral corner reflection), e.g. (Lopez-
Martinez et al. 2007). These scattering mechanisms raise HH-polarized scattering above VV-
polarized one due to the Brewster angle effect. 

coR

coR

coR coR

The relation of the cross-polarized backscattering to the co-polarized one is characterized by 
the cross-polarization ratio  or by the depolarization ratio , e.g. (Drinkwater et al. 
1991, 1992): 

crR depolR
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= , (3.19)
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+
=

°σ+°σ
°σ

= . (3.20)

These ratios are indicators of multiple scattering events which raise cross-polarized scattering 
relatively more than co-polarized scattering. Strong multiple scattering occurs when e.g. 
surface is very rough (Fung 1994). 
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The above mentioned discriminants can also be obtained with multichannel radars measuring 
only the intensities of the backscattered fields. 

When the polarization state of the co- or cross-polarized signature is synthetically varied 
(polarization synthesis is explained e.g. in (Lopez-Martinez et al. 2007)) and the maximum 
and minimum intensities  and  are recorded, two statistics, the coefficient of 
variation  and the fractional polarization , can be calculated (Drinkwater et al. 1991): 

maxP minP
γ pf

max

min

P
P

=γ , (3.21)

minmax

minmax

PP
PPf p +

−
= . (3.22)

γ  and  relate to the heterogeneity of the scattering mechanisms in the target and the 
fraction of polarized returns. High values of  can be caused by a combination of multiple 
scattering, inhomogeneity in the scattering mechanisms within target, and a low signal-to-
noise ratio. (Drinkwater et al. 1991). 

pf
γ

The relative phase difference between co-polarized channels is obtained from, e.g. 
(Drinkwater et al. 1991): 
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If the surface is lossy,  is negative, and further decreases with increasing incidence 
angle (Drinkwater et al. 1992). The higher the dielectric constant of the surface, the more 
rapid this decrease becomes. When the surface is very smooth, 

VVHH −φ

VVHH −φ  can be approximated 
by the Fresnel reflection coefficients. According to a theoretical backscattering model for thin 
ice (penetration depth is larger than ice thickness) by Winebrenner et al. (1995), there is an 
interference between up- and down-going waves in the ice layer resulting from scattering at 
the air-ice and ice-water boundaries which causes VVHH −φ  to oscillate as a function of ice 
thickness with a mean value of zero degrees. This interference effect may produce large 
values of . Also  oscillates as a function of ice thickness and is always below 
unity. If the scattering centers at HH- and VV-polarization are vertically separated then large 

 values are also produced. 

VVHH −φ coR

VVHH −φ

The correlation coefficient between co-polarized channels is, e.g. (Drinkwater et al. 1992): 

( )( )**

*

VVVVHHHH

VVHH
co

SSSS

SS
=ρ . (3.24)

If the magnitude of  is unity then backscattering is fully polarized; the co-polarized returns 
are perfectly correlated and the cross-polarized return is zero. An example is the backscattered 
wave received from an ideal trihedral corner reflector. 

coρ

coρ  generally decreases with 
increasing incidence angle in sea ice that is predominantly surface scattering, and at an 
increasing rate in higher salinity ice (Drinkwater et al. 1992). The longer the radar 
wavelength, the lower is the sensitivity of coρ  to surface or volume scattering effects. In 
presence of volume scattering low coρ  values can be explained by two effects: ellipsoidal 
shape of scatterers (e.g. brine pockets in sea ice) and anisotropy due to the preferential 
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orientation of scatterers (e.g. vertical orientation of brine pockets) (Nghiem et al. 1995). When 
the penetration depth is larger than thickness (i.e. the interference effect is present) varying 
ice thickness within sample area produces coρ  significantly less than one (Winebrenner et al. 
1995). In general, the smaller  is, the greater the variance of coρ VVHH −φ , and the smaller  
becomes. 

pf

3.3 Brightness Temperature 
All physical objects emit thermal radiation in the form of electromagnetic waves. Under 
thermal equilibrium the absorption and emission of the object are equal, which means that the 
physical temperature of the object is constant. A perfect absorber and radiator is called a 
blackbody. Planck’s radiation law gives the brightness of a blackbody, but at microwave 
frequencies the linear Rayleigh-Jeans law gives an good estimation (Ulaby et al. 1981). A 
physical object always radiates less than a blackbody at the same physical temperature. The 
ratio between the brightness of a real object and that of a blackbody is defined as emissivity 

, which is dependent on the angular variables e θ  (measurement angle from vertical) and ϕ  
(azimuthal angle) (Ulaby et al. 1981). In passive microwave remote sensing, the power 
measured by a radiometer is expressed as brightness temperature ( )ϕθ,BT  (in Kelvin), which 
is the product of the emissivity of a target and its physical temperature T (Ulaby et al. 1981): 

( ) ( ) TeTB ⋅ϕθ=ϕθ ,, . (3.25)

If the measurement target has azimuthal symmetry then  depends only on angle θ . BT

Radiometers typically measure  at both H- and V-polarization. Airborne and spaceborne 
radiometer systems also have several measurement frequencies. If surface temperature is 
simultaneously measured with , then measured  values can be converted to emissivities 
which are more meaningful in comparison with target physical properties. However, this 
conversion is not always totally accurate as the surface temperature instruments, like infrared 
radiometers, measure only surface skin temperature, whereas 

BT

BT BT

T  in (3.25) is the effective 
temperature for the layer from which the thermal radiation mainly emanates. The accuracy of 
the conversion is the better, the thinner this layer is. 

Brightness temperature of snow covered level sea ice depends on the same sea ice physical 
parameters as the backscattering coefficient. Radiometer incidence angle changes measured 

 mainly through the Fresnel coefficients and the Brewster angle effect. Radiometer 
frequency (i.e. wavelength) changes measured  through the relative sizes of the roughness 
parameters and scatterers to the wavelength. 

BT

BT
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4 Previous Research in Microwave Remote Sensing of the 
Baltic Sea Ice 

Investigations on the feasibility of microwave remote sensing for the Baltic Sea ice 
monitoring started in 1975 (Hallikainen 1992). The first research campaign was Sea Ice-75 
organized jointly by Finland and Sweden. In this campaign first airborne radar (10 GHz side-
looking airborne radar (SLAR)) and radiometer (0.6 and 5 GHz) measurements were 
conducted. It was followed in 1987 by the Bothnian Experiment in Preparation of ERS-1 
(BEPERS-87) pilot study organized by Finland, Sweden and West Germany together 
(Leppäranta et al. 1992). This study included the first airborne SAR measurements over the 
Baltic Sea ice with a French X-band SAR. BEPERS-88 study included first airborne C-band 
SAR measurements conducted by Canada Centre for Remote Sensing (CCRS) and first C- 
and X-band helicopter-borne scatterometer measurements conducted by Laboratory of Space 
Technology of Helsinki University of Technology (Leppäranta and Thompson 1989). In the 
late 1980’s the research work intensified for studying the use of the ERS-1 SAR images for 
the Baltic Sea ice monitoring. First ERS-1 images, and also the first spaceborne SAR images 
over the Baltic Sea ice, were acquired in winter 1992. 

In the field of the Baltic Sea ice microwave remote sensing research Finland has been the 
most active country since the late 1980’s, when counted by the number of projects and 
publications. Sweden was also very active up to around 1997; likely (and hopefully) there has 
just been temporary hiatus in the research work. In the other Baltic countries the research 
work has been limited. In the field campaigns organized by Finland and Sweden there have 
been occasionally scientists from other countries, like Germany, Russia, Canada, Great 
Britain and USA. The research projects in Finland have mostly been national, funded by 
Finnish Funding Agency for Technology and Innovation (TEKES) and Academy of Finland. 

The main goal of the research projects has been to develop operational sea ice classification 
algorithms for spaceborne SAR data: ERS-1/2, RADARSAT-1 and ENVISAT Advanced 
SAR (ASAR). Besides this, the projects have also included (1) basic research in  signatures 
of sea ice, e.g.  statistics for various ice types and effect of snow wetness in the statistics, 
(2) theoretical modeling of  signatures, (3) field campaigns to gather ground truth data and 

 data with airborne and shipborne radars, (4) development of end-user software for 
interpretation and use of the sea ice products, and (5) various issues of data delivery to end-
users at ships. Tasks (1)-(3) support the development and validation of the SAR classification 
algorithms. 

°σ
°σ

°σ
°σ

Polarimetric SAR remote sensing of the Baltic Sea ice is still in infancy, mainly due to the 
very limited amount of data available thus far. The first, and so far the only, polarimetric SAR 
images over the Baltic Sea ice were acquired in 1995 by Danish airborne EMISAR radar 
(Dall et al. 1997). 

Utilization of spaceborne microwave radiometer data for the Baltic Sea ice monitoring has 
been not been studied much. The main reason for this is the very coarse resolution of the 
radiometer data, e.g. in the AMSR-E data the resolution is from 56 to 6.4 km. The first study 
in using spaceborne radiometer data for determining the ice concentration in the Baltic Sea 
was conducted in 1986 (Hallikainen and Mikkonen 1986). The first airborne multifrequency 
radiometer (24/35/48/94 GHz) measurements for supporting the development of classification 
algorithms were conducted in 1990 (Hallikainen 1992). 

In the following Sections previous studies in the various subjects of the microwave remote 
sensing of the Baltic Sea ice are reviewed. In the last Section those previous results relevant 
for this thesis are summarized. 
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4.1 Dielectric Constant of Sea Ice and Snow 
Effective dielectric constant  of the Baltic Sea ice has been studied empirically by 
Hallikainen (1983) and Hallikainen et al. (1988). Theoretical studies have not yet been 
conducted. Hallikainen (1983) measured in 1978 and 1979 

rε

rε  of ice samples from the Gulf of 
Finland using frequencies 0.6 and 0.9 GHz. The salinity of the ice samples varied from 0.0 to 
1.6‰ and temperature from -18 to -0.5ºC. The rε  study by Hallikainen et al. (1988) was 
conducted in the Bay of Bothnia in 1987 at a frequency of 10 GHz. The salinity and 
temperature of the ice samples was from 0.0 to 1.0 ‰ and from -6.0 to -0.3ºC, respectively. 
These measurements have not been used to derive a general, wide frequency range Baltic Sea 
ice  model. rε

Using the above mentioned measurements and data from many Artic Sea ice  studies, 
Hallikainen and Winebrenner (1992) derived an empirical sea ice 

rε

rε  model where  is only 
a function of relative brine volume fraction 

rε
≤bv 70‰: 

1 GHz: ,009.012.3 brsi v+=ε′  ,005.004.0 brsi v+=ε ′′  

4 GHz:  ,0072.005.3 brsi v+=ε′ ,0033.002.0 brsi v+=ε ′′  

10 GHz: ,012.00.3 brsi v+=ε′  brsi v010.00.0 +=ε ′′ . 

(4.1)

The equations do not explicitly take into account the effect of ice density upon the real part of 
. The volume fraction of brine is calculated from sea ice temperature, salinity and 

temperature using a method devised by Cox and Weeks (1983) and extended to the Baltic Sea 
ice low salinities and temperatures above -2ºC by Leppäranta and Manninen (1988). 

rsiε

Carlström and Ulander (1995) used the 4 GHz rsiε  equation also at 5.3 GHz (frequency of 
ERS-1, RADARSAT-1 and ENVISAT ASAR) for the Baltic Sea ice, but they modified the 
constant term of the imaginary part to make it approach the measured values for fresh-water 
ice: 

Baltic Sea ice at 5.3 GHz: ,0072.005.3 brsi v+=ε′  brsi v0033.0001.0 +=ε ′′ . (4.2)

Effective  of the snow cover on the Baltic Sea ice has not been studied and, thus,  models 
for snow on land must be utilized. It is possible that 

rε rε

rε  for snow on land and on sea ice with 
equal density and wetness are somewhat different due to the strong wind packing of sea ice 
snow cover and occurrence of brine in snow on sea ice. 

Real part of  for dry snow is obtained from (Hallikainen et al. 1986): rε

3cmg5.0  ,9.11 ≤ρρ⋅+=ε′ dsdsrds  (4.3)

and imaginary part below 13 GHz from (Tiuri et al. 1984): 

( )( ) ( )sdsdsrds Tff 036.0exp1023.162.052.01059.1 14126 −− ⋅+ρ+ρ⋅=ε ′′ , (4.4)

where  is dry snow density,  is frequency and  is snow temperature in degrees Celsius. dsρ f sT
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For wet snow,  is calculated using a semi-empirical Debye-like model (Hallikainen et al. 
1986): 

rε

( )2
01 ff

BmA
x
v

rws +
+=ε′ , 

( )
( )2

0

0

1 ff
mffC x

v
rws +

=ε ′′ , 
(4.5)

where   is volumetric liquid water content of snow in percent (wetness), vm

1
015.1

102.082.10.1 BmAA vds ++ρ+= , 1073.0 AB = , 2073.0 AC = , 

31.1=x ,  GHz, 07.90 =f 0.121 == AA  and 01 =B  when GHz 15<f . 

4.2 Geometric Properties of Sea Ice 
For theoretical modeling of level ice °σ  the following statistics of the ice surface roughness 
are needed: rms surface roughness, surface correlation length and the form of the surface 
autocorrelation function. If the contribution of snow surface °σ  is estimated to be significant 
then the same statistics are also needed for the snow surface. For °σ  modeling of sea ice 
deformations, like ice ridges, also a geometrical surface structure model of ice is required. In 
the case of  modeling of a deformed ice field in scale of large SAR pixels (e.g. 100 by 100 
m) a spatial model for occurrence of deformations, e.g. spatial density of ice ridges, is 
furthermore needed. These statistics and models also help to interpret measured 

°σ

°σ  
signatures. Of the deformed ice types, surface structure and spatial statistics of ice ridges have 
been measured and modeled so far. The most extensive study on the ice ridge spatial statistics 
has been conducted by Lensu (2003). The results of this study are not reviewed here as they 
have not yet been utilized in the classification of SAR images and theoretical  modeling. °σ

4.2.1 Ice surface roughness 
The most extensive study so far on the Baltic Sea ice surface roughness has been conducted 
by Manninen (1997a). She measured in four field campaigns in 1992-1994 surface roughness 
of sea ice in the following three scales: small scale; profile length 1 m, horizontal resolution   
1 mm, medium scale; length 5 m, resolution 5 cm, and large scale; length 50 or 100 m, 
resolution 50 cm. Measured ice types ranged from very smooth level ice to very rough rubble 
fields. Small scale roughness measurements were also conducted on ice ridge blocks. 
Analysis of the measurements indicated a dependence of the surface rms roughness  and 
correlation length  on the measurement length . This is a property of fractal profile and it 
turned out that a suitable method to describe the dependence of  and  on l  in the ice 
surface profiles is the fractional Brownian motion (fBm). fBm itself is a non-stationary 
process, but its increments are stationary. 

s
L l

s L

The functional dependence of  of the fBm on the measurement length  has a power-law 
form (Church 1988): 

s l

)ln()ln( lbas +=  (4.6)

and  is linearly dependent on  (Church 1988): L l

lkL 0= . (4.7)
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The coefficient a  is related to the actual profile level, whereas b  describes the variation of 
the profile with spatial frequency. The value of  depends on the unit used for  and . The 
coefficients  and  are functions of the fractal dimension  of the surface (Church 1988): 

a l s
0k b D

( )
( )D

Dk
49

22 2

0 −
−

= , Db −= 2 . (4.8)

Consequently, there is a simple relationship also directly between  and : s L

( ) bsbakL /1
0 /exp −= . (4.9)

Using linear regression analysis the coefficients ,  and b  were calculated for all 
measured small, medium and large scale profiles. On all scales  obeyed fBm behavior quite 
well; the median of the correlation coefficient for the linear regression was above 0.9 in all 
cases.  was not as clearly of the fBm type. Although the correlation between  and  is 
obvious on all cases, it is not strong enough to enable elimination of one of these three 
coefficients. The general similarity of the small, medium and large scale results clearly 
revealed the fractal-like, i.e. multiscale surface roughness, nature of the Baltic Sea ice 
surfaces. (Manninen 1997a). 

0k a
s

L 0k b

It was difficult to find any representative average values of ,  and  for different ice 
types. However, in the large scale the relationship between a  and  and the interdependence 
of (4.9) as a function of  in the -  space reveals different ice types to some degree, for 
example, the smoother the ice, the smaller is  for equal values of b . The relationship of  
and b  does not distinguish any ice types. (Manninen 1997a). 

0k a b
b

l s L
a 0k

In practice, (4.6) and (4.7) cannot be expected to be valid to infinity. However, it is probable 
that  and  increase to maximum values characteristic of the ice type in question and then 
saturate. (Manninen 1997a). 

s L

The small scale  increases with time due to wind, snow accumulation, and varying 
temperature. Ice blocks of old ridges are typically slightly rougher than surrounding flat ice 
areas. Typically dry thin snow layer decreases the small scale roughness, whereas wet snow 
sticks to the ice surface easily and over time produces typically anisotropic small scale 
roughness on the ice. The surface roughness is typically larger parallel to the direction of the 
predominant wind. Ice blocks in ridges have typically only moderately anisotropic surfaces. 
In the medium and large scale, snow fills deep pits of deformed ice and, thus,  of the snow 
surface is typically smaller than that of the ice surface. The snow and ice surfaces are 
correlated, but only at a coarse level. (Manninen 1997a). 

s

s

The  and  values presented by Manninen (1997a) are consistent with values reported in 
other Baltic Sea ice roughness studies for 1 m and 10 m profiles, e.g. (Johansson 1988, 
Carlström and Ulander 1995). However, the other researchers did not analyze the dependence 
of  and  on . 

s L

s L l

Carlström and Ulander (1995) and Dierking et al. (1999) measured ice surface roughness with 
a laser profiler which acquired 1 m profiles. After low-pass filtering of the profiles, horizontal 
resolution was 2 mm and rms elevation error was 0.5 mm. It was assumed that the measured 
profiles are from a wide-sense stationary surface, i.e.  and  do not depend on the 
measurement location and l . For each profile, the autocorrelation function (ACF) was 
calculated using standard signal processing algorithms, including mean and trend removal. 
ACF’s of several profiles from the same surface were averaged to reduce statistical 

s L

 25



fluctuations. Exponential ACF was found to be an adequate model for the measured average 
ACF. 

Dierking et al. (1997) developed a surface roughness model for an area of refrozen brash ice 
in order to interpret ship based scatterometer measurements. The roughness model was based 
on surface profile data measured with a laser profiler. In total eight 9-meter long profiles were 
measured in two lines running in radial direction from the scatterometer position. The 
horizontal and vertical resolutions of the profiles were 20 mm and 3 mm, respectively. As the 
profiles revealed considerable changes in the surface roughness, the area of the scatterometer 
measurements was regarded to be nonstationary. For estimation of the magnitude of 
roughness variations over the area illuminated by the scatterometer, the profiles were divided 
into 4.5 m long segments which were assumed to represent surfaces with wide-sense 
stationary roughness, i.e. the measurement area was approximated to consist of adjacent 
patches of stationary roughness. From the roughness spectra of the segments, two classes 
were distinguished: ‘smooth’ and ‘rough’ class. Segments grouped into a certain class were 
within the ±2 standard deviation interval around the mean class spectrum. The form of the 
surface ACF needed in the theoretical °σ  models was assumed to be: 

( ) ( )4222exp ge LLxxx +−=ρ , (4.10)

where  and  are the exponential and Gaussian correlation length, respectively. If 
 this ACF model describes a surface consisting of large structures which are 

correlated exponentially with scale length of , and superimposed small scale structures 
(rms roughness at maximum few centimeters) with a Gaussian correlation function of scale 
length . 
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The calculation of ACF includes mean and trend removal in the surface profile data. This 
affects the shape of the resulting ACF because means and trends from individual segments of 
finite length are used instead of the population mean and trend of the infinite data series. A 
consequence of this is that  and  are smaller than the corresponding values of the 
population (  and ). The decrease of segmentwise  and  depends on the ratio . 
For example, for the class ‘rough’  and  of a 4.5 m long segment were 22 mm and 0.25 m, 
respectively, compared to =28 mm and =0.46 m. In case of a 9 m segment,  was       
25 mm and  was 0.34 m. Therefore, the ideal profiling length for class “rough,” should be 
longer than 10 m in order to measure roughness parameters which are close to  and . 
However, this is impractical in the field work and, additionally, profiles may not be stationary 
over the long lengths. 
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In summary, there are three possibilities for describing the surface roughness of the Baltic Sea 
ice: (1) Surface roughness is stationary over large areas, e.g. in a SAR pixel of 100 by 100 m. 

 and  do not depend on . However, in empirical data the dependence is present if the 
ratio  is not small enough. (2) Surface roughness is stationary over small surface patches 
which have different roughness spectra (i.e.  and  values). Roughness is nonstationary 
over large areas. (3) Surface has multiscale roughness which can be characterized by the fBm 
process.  and  always depend on l , regardless of how large  is. Case (1) can used with 
traditional surface backscattering models, like the IEM model, which assume stationary 
surface. Likewise is Case (2), if the stationary surface patches are equal or larger than the area 
of the illuminated by the radar. Case (3) is not valid with the traditional scattering models and, 
thus, its use requires either modifications to these models or development of entirely new 
models. Manninen’s (1997a) results obtained with a large surface roughness data set 
suggested strongly that Case (3) is valid for the Baltic Sea ice. 

s L l
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4.2.2 Surface structure of ice ridge 
Ice ridges in the Baltic Sea have been studied intensively in the past, but the main emphasis 
has been in the large scale properties of the ridge sail and keel (Manninen 1996a). For 
theoretical modeling of , a surface structure model of an ice ridge is required. Models for 
the surface structure have been developed in (Carlström and Ulander 1995) and (Manninen 
1992). 

°σ

Model by Carlström and Ulander (1995) 
Carlström and Ulander (1995) modeled an ice ridge as an ensemble of equally sized circular 
ice disks on a horizontal plane surface. This was based on the hypothesis that the circular 
scattering pattern of the disk may be interpreted as an ensemble average of the scattering from 
an ice block with arbitrary shape that is randomly rotated around the normal of its major facet. 
The physical parameters of the disk are the radius and thereby the area of the disk facet, disk 
thickness and superimposed small scale roughness (rms-roughness from 1 mm to few 
centimeters), and the 2-D joint probability density function (pdf) of the disk facet slopes in the 
horizontal x - and y -directions. The model was simplified by assuming the slope pdf to be 
azimuthally isotropic and, thus, it can be obtained from 1-D profile measurements of ice 
ridges which yield an 1-D surface slope distribution. For the measured profiles, the Cauchy 
pdf can be used to represent the distribution of the ice disk slopes: 

( ) ( )22
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where  is the surface height derivative in the xz′ x -  plane and  is the half-value point of 
the Cauchy pdf. 

z m

The 2-D isotropic pdf for the ice disk surface slopes is now: 
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where  is the surface height derivatives in the yz′ y -  plane. z

The size and slope angle of the disk are assumed to be independent in the model. The model 
does not include large scale topography parameters of ice ridges, like width and height of the 
ice ridge. 

Model by Manninen (1992) 
Manninen (1992) developed a 3-D geometrical structural ice ridge model based on ridge 
geometry and ice block size and orientation statistics. The main idea of the model is to 
calculate an incidence angle distribution for the cross sectional surface of an ice ridge. 

The general shape of the triangular cross-section of the ice ridge sail is defined by the 
proximal and distal slope angles  and pθ dθ , sail height  and porosity rh p  (0< p <1). The ice 
blocks in the ridge sail are assumed to be rectangular polyhedrons. Each ice block is described 
with the three Euler angles: horizontal rotation angle ϕ , vertical rotation angle , and angle 

 describing the rotation of the main facet around its normal vector, and with three 
dimensions: length a  and width  of the main facet and thickness  of the ice block. Other 
parameters needed are the vertical distance  between the radar and ice level, the radar 
incidence angle  at the proximal edge of the ridge sail, and the radar azimuth angle 

θ
ψ

b h
fh

0θ 0ϕ  
between the radar look direction and the normal of the ridge direction (for description of the 
model see Figures 2 and 3 and Table 1 in (Manninen 1992)). 
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The calculation of the Euler angles and the dimension parameters is presented in (Manninen 
1993, 1994). A summary of the calculation process is available in (Manninen 1996a, pp. 12-
14). Needed ice ridge ground truth measurements are described in (Manninen 1996b, p. 147). 

Manninen (1996b) conducted ground truth measurements of ice block size, shape and 
orientation for several ice ridges in four field campaigns in 1991-1994. This data was used to 
study statistics of the Euler angles and dimension parameters. In 1993, also general shape of 
an ice ridge was studied. The general cross-section of an ice ridge was defined by a sequence 
of slices comprising two joining triangles (see Fig. 4. in (Manninen 1996b)). 

Measured ridge shape parameters were the slope angles and lengths of the ridge sail along the 
ridge. The results showed that the slope angle and length do not seem to obey log-normal or 
normal distribution very well. The height and the height difference of the two sides were 
normally distributed. The two cross-sectional triangles were generally not similar, only their 
sail heights had a clear correlation. The slope angle did not depend strongly on the other three 
slope parameters (width, height and length). A slight negative correlation existed between the 
slope width and the slope angle, indicating that steepest slopes corresponded to the narrowest 
sails. The average slope angle was equal for both sides. This was expected, as the ice blocks 
on both sides of the ridge were formed from the same ice field and had similar piling 
properties. 

According to the ice block measurements, the average measured vertical inclination  of the 
individual ice block main facets was about equal in both sides of a ridge. However, the two 
sides were different from each other when the orientation of the main facets was described 
with Euler angles  and . Thus, the vertical process of deformation affected both sides in 
roughly the same way, whereas the horizontal rotation of the ice blocks was different. 
Although the shape of the main facets varied very much, the orientation of the side facets 
versus the main facet was typically very close to orthogonal. Consequently, the approximation 
of the ice block polygons by rectangular polyhedrons is very good, if the main facets can be 
matched well with rectangles. As triangular facets were rare, it was usually possible to find a 
good rectangular approximation for the main ice block facets. The Euler angles and 
dimensions of the ice blocks could be described with normal pdfs. Empirical distributions 
were typically very wide, e.g., standard deviations were from 20º to 70º. The correlations 
between the six parameters were almost nonexistent. Only the length  and the width b  had a 
slight positive correlation. It was noted, that the two sides of a ridge should be treated 
statistically separately. 

mθ

θ ϕ

a

Manninen (1996b) emphasized that 3-D modeling of ridges is essential, since the total side 
facet area visible to the radar is typically at least as large as the total main facet area. The 
assumption that the main facets alone represent the ridges well is not directly justified. 

4.3 Theoretical Backscattering Models 
Theoretical modeling of level ice  has been studied by the models presented in literature by 
Carlström and Ulander (1995) and Dierking et al. (1997, 1999). They compared modeled 

°σ
°σ  

values to measured ones. Dierking et al. (1997) also modeled textural variation ( ) of Ts °σ . 
Input data to the  models were obtained from ground truth measurements. Manninen 
(1997b) developed the IEM model by Fung (1994) to be applicable to surfaces with 
multiscale surface roughness (fractal-like surfaces). 

°σ

°σ  models for ice ridges have been 
developed by Carlström and Ulander (1995) and Manninen (1992). In their  models they 
used different surface structure models of ice ridges. The model by Carlström and Ulander 
(1995) was further developed by Carlström (1997). The ice ridge  models are also 
applicable for other deformation features which consist of ice blocks with dimensions several 
times larger than the radar wavelength. 

°σ

°σ
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4.3.1 Level ice 
°σ  modeling studies by Carlström and Ulander (1995) and Dierking et al. (1999) 

Carlström and Ulander (1995) formulated a °σ  model for level ice based on the first-order 
solution of the radiative transfer equation. The model included six scattering components: 
snow, ice and ice-ocean surface scattering, volume scattering from air bubbles in ice, surface-
volume interaction scattering in ice and transmitted scattering from ice surface to ice volume 
and then reflection at ice-ocean interface. The first five components are illustrated in Figure 
3.1. Surface scattering was modeled with the IEM model and volume scattering with the 
Rayleigh model. The transmitted surface scattering was modeled with the small perturbation 
model (Ulaby et al. 1982). 

Using the radar parameters of ERS-1 SAR (frequency 5.3 GHz, VV-polarization, incidence 
angle 23º), the effect of ice salinity on the different scattering components was investigated. 
For other sea ice parameters typical values based on the ground truth measurements during 
two field campaigns in the Bay of Bothnia in 1992 were used; e.g. ice thickness was 30 cm. 
The air bubble diameter was set to 2 mm which yields an high estimate for the volume 
scattering contribution. The results showed that dominating contributions from the ice-ocean 
interface are obtained only when ice salinity <0.1‰. For >0.2‰ all scattering 
components due to the ice-ocean interface can be neglected. Scattering from dry snow surface 
was always negligible. 

S S

The scattering model was also compared with ERS-1 SAR derived °σ  values for level ice. In 
this comparison the scattering model was simplified to include only scattering contributions 
from ice surface and volume. This model is very sensitive to the air bubble diameter, which 
made it difficult to validate it with measured °σ  values. The air bubble diameter was set to    
1 mm. When the ice surface rms roughness >1.5 mm and >0.5‰, which is typical for 
pack ice, the model showed that ice surface scattering is totally dominating. The model 
predicted and ERS-1 

s S

°σ  values differed less than 2 dB. When <1 mm and <0.1‰, the 
model clearly underestimated the measured 

s S
°σ  values. Carlström and Ulander (1995) 

concluded that ice surface scattering is typically the dominant scattering mechanism for level 
pack ice for the ERS-1 SAR radar parameters. Sub-surface scattering (e.g. ice volume and ice-
ocean interface scattering) is significant only when <0.5‰ which is typical for level 
landfast ice at the bottom of the bays in the Bay of Bothnia and the Gulf of Finland. 

S

Dierking et al. (1999) conducted ship based scatterometer measurements of smooth level ice 
in the Bay of Bothnia in April 1995. The scatterometer was operated at 1.25, 2.6, 5.4 and     
10 GHz (L-, S-, C- and X-band) and at HH- and VV-polarization. The incidence angle ranged 
from 20º to 60º in steps of 5º. Various snow and sea ice parameters, including ice surface 
roughness and ice volume properties, were acquired during the field work. Measured °σ  
values were compared to predictions of a theoretical °σ  model based on the first-order 
solution of the radiative transfer equation (Fung 1994). The model included scattering 
contributions from ice surface, ice volume and ice-ocean interface. The ice bulk was divided 
into two layers and, thus, into two volume scattering components, because of the observed 
change of the average  from 0.1‰ to 0.4‰ at a depth of about 0.15 m. The thickness of the 
lower layer was between 0.25-0.65 m in the model. Surface scattering between the two ice 
layers was not considered. Surface and volume scattering of dry snow layer with an average 
thickness of 5 cm, as well as the absorption loss in the snow, were neglected. Also surface-
volume and interface-interface scattering interactions were ignored. Ice volume scattering 
from air bubbles was modeled with the Rayleigh model, ice surface scattering with the IEM 
model and ice-ocean interface scattering with the geometric optics approximation (Ulaby et 
al. 1982). The latter model was selected because the impulse radar measurements of the ice 
thickness indicated large, slow variations which suggest an undulating ice-ocean interface 
with a large rms surface slope. 

S
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When the dielectric contrast in the ice-ocean interface is determined by the average  of the 
lower ice layer and the sea water, as in (Carlström and Ulander 1995), the modeled  values 
were much too large. A good correspondence with the measured 

rε
°σ

°σ  values was obtained 
when it was assumed that there is a thin bottom layer above the ice-ocean interface with rε  of 
5.5-j0.6. This was considered as a realistic assumption, because near the ice-ocean interface, 

 increases drastically and, thus, also bv rε , and the radar wave is strongly attenuated before it 
reaches the ice-ocean interface. 

At X-band modeled and measured °σ  values compared well at most incidence angles. The 
modeling results indicated that volume scattering from the upper ice layer dominated. Ice 
surface scattering was significant only at small incidence angles (<30º). At C-band, the ice 
surface scattering was the main scattering source up to an incidence angle of 45º at HH-
polarization and up to 55º at VV-polarization. At larger incidence angles, ice volume 
scattering became significant. Also at S-band, the ice surface was the strongest scattering 
source. Contributions from the ice volume were negligible, but depending on ice thickness, 
scattering from ice-ocean interface may have contributed noticeably to the total . At C- and 
S-band the measured co-polarization ratio was close to one even at larger incidence angles, 
whereas the predicted ratio was about +3 dB at 60º. This discrepancy could be due to volume 
inhomogeneities in the ice which are not accounted for in the volume scattering model and 
due to the surface and volume multiple scattering effects. At L-band, the measured  values 
could be explained by scattering from the ice-ocean interface. 

°σ

°σ

In summary, these studies indicated that at C-band co-polarization (RADARSAT-1, 
ENVISAT ASAR) ice surface scattering typically dominates when the incidence angle is less 
than 45º and snow cover is dry. If the ice surface is very smooth and salinity <0.5‰ then 
scattering from ice-water interface and ice volume are significant. 

S

°σ  and  modeling study by Dierking et al. (1997) Ts
Dierking et al. (1997) conducted ship based scatterometer measurements over an area of 
refrozen brash ice. The scatterometer operated at 5.4 GHz with HH- and VV-polarization. The 
incidence angle was varied from 20º to 65º in steps of 5º. For each incidence angle, data at 14 
different azimuth directions separated by 5º were measured. The scatterometer data were 
processed to the mean °σ  values, 95% confidence limits of °σ , std of texture ( ) (see (3.3)), 
and the standard deviation of the estimated  at each incidence angle. Two ERS-1 SAR-
derived mean  and  values were also obtained. These measured data were then compared 
with theoretical  and  models. For modeling 

Ts

Ts
°σ Ts
°σ Ts °σ  and  a roughness model for the study 

area was developed based on the surface profile measurements. Surface roughness was 
assumed to be stationary over small surface patches divided into ‘smooth’ and ‘rough’ classes 
(see Chapter 4.2.1). The size of the patches equaled roughly the area illuminated by the 
scatterometer antenna. 

Ts

Theoretical ice surface  modeling for the two roughness classes was conducted using the 
IEM model. As the thin snow cover was dry its scattering contribution was neglected, as was 
the ice volume scattering. There was good correspondence between measured and theoretical 

 values at VV- and HH-polarization for class “rough” except at incidence angles of 35º and 
40º and at incidence angles ≥60º. The theoretical 

°σ

°σ
°σ  values obtained for class “smooth” were 

much lower than the measured averages. Thus, the magnitudes of the roughness parameters 
were in the range of class “rough” for a large areal fraction of the study area, whereas only a 
few single smooth patches were imbedded in the rougher surface matrix which did not 
influence the measured mean . °σ
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As the estimated roughness parameters depend on the segment length , it was investigated 
how changes in the surface parameters due to a varying  affect the predicted values of 

l
l °σ . 

With  values from 1.12 to 9 m, it was found out that the difference between ’s calculated 
with  and  increased with decreasing l  and with increasing incidence angle. 
However, the difference was generally low; at maximum around 2.5 dB and less than 1 dB for 
≥4.5 m. Considering the confidence intervals of the measured 

l °σ
∞<l ∞=l

l °σ , it was concluded that the 
changes in the predicted  values due to different segment lengths are acceptable if °σ λ>>l . 

The expected received power and  in the presence of two surface roughness classes I 
(‘rough’) and II (‘smooth’) were modeled as: 

Ts
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where  is the area fraction of the class II,  and  are backscattered power of classes I 
and II, respectively. Simulations of  were carried out using theoretical ’s for  and  
(  is proportional to 

f IP IIP

Ts °σ IP IIP
°σ P ) and varying  from 0.0 to 0.4. The simulated  was larger at HH- 

than at VV-polarization, and with increasing incidence angle  increased to a maximum at 
35º (VV-polarization) and 60º (HH-polarization), respectively, and then decreased at larger 
incidence angles. Consequently, SAR images acquired at HH-polarization and at the mid-to-
large incidence angle range are the most sensitive to surface roughness inhomogeneities. 
From the measured  values,  estimates were evaluated by searching the minimum of 
deviations between the measured and theoretical . The largest  values were obtained at 
35º ( =0.45) and 40º ( =0.30). With these  estimates, the modeled 

f Ts

Ts

Ts f

Ts f
f f f °σ  values were within 

the confidence intervals of the measured data. 
In the ERS-1 SAR images the study area did not exhibit any intensity variations due to 
surface roughness inhomogeneities. It is possible that the length scales of roughness 
variations were smaller than the ERS-1 SAR resolution, and that the variations were 
distributed homogeneously on larger scales. Additionally, according to the  simulations the 
ERS-1 SAR has relatively low sensitivity to the surface roughness variations. 

Ts

In general, the above method for simulating °σ  and  for an inhomogeneous sea ice area is a 
valuable tool for sea ice SAR image studies, but it requires the areas within the SAR pixels to 
have wide-sense stationary surface roughness. 

Ts

IEM  model for surface with multiscale roughness (Manninen1997b) °σ

Manninen (1997b) modified the IEM model in (3.9) to be applicable to surfaces with 
multiscale surface roughness (continuous roughness spectrum) by replacing the single scale 
autocorrelation functions with multiscale ones. For example, the isotropic multiscale Gaussian 
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where b  and  are coefficients in (4.6) and (4.7),  is the maximum distance (the length of 
the surface profile), Γ  is the incomplete gamma function and  is the Bessel function of the 
first kind. Equation (4.16) can only be solved using numerical integration. The best accuracy 
is obtained with the Euler’s method. 

0k 0x

1J

The multiscale autocorrelation functions fitted always better experimental small, medium and 
large scale functions for various Baltic Sea ice types (for description of scales see Chapter 
4.2.1) than the single scale functions. Additionally, coefficients  and  obtained from the 
medium and large scale measurements produced reasonable autocorrelation functions for the 
small scale cases. 

b 0k

The inclusion of roughness scales smaller than that corresponding to the maximum  may 
also lead to smaller values of , although the opposite case is more typical at larger 
distances. Though the interference of various scales is sometimes slightly destructive, 
increasing  (or ) usually increases multiscale 

L
)(nW

s 0x °σ . The multiscale  increases more 
strongly with increasing  than the single scale 

°σ

0x °σ  (ordinary IEM), and surpasses it for 
many ice types already in an area having a diameter of about 50 m. The difference between 
the single and multiscale  values is naturally smallest for the smoothest ice surfaces. °σ

It is difficult to decide what  to use for an area illuminated by the radar. In principle, the 
whole illuminated area should be taken into account, but usually it is thought that the 
roughness scale close to the radar wavelength is the most important. However, currently there 
is no rule on how to choose the value of . The maximum value of  is limited by the IEM 
validity limits which for the exponential surface correlation are: 
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In most cases the latter condition is more restrictive for the Baltic Sea ice, which has small 
, than the former one. According to the measured ice surface profiles, it seemed that in 

many cases, especially for either heavily ridged ice or very smooth ice, IEM could be applied 
to areas comparable, for example, to the resolution of ERS-1 SAR, if the local incidence angle 
in the Fresnel reflection coefficients can be approximated with a better value than the radar 
incidence angle. It was concluded that the multiscale IEM model is not yet applicable to large 
pixels of very rough surfaces with small 

rε

rε , like the Baltic Sea ice. 

This multiscale IEM model has not yet been validated with empirical °σ  data or with moment 
method calculations. Neither it has been used in the studies by other researchers. Other 
multiscale IEM models have been presented in the literature, e.g. a model by Mattia and Le 
Toan (1999) who derived the model starting from the scattered field equations. Also in this 
model the choice of the maximum distance is problematic. 

4.3.2 Ice ridges 
Model by Carlström and Ulander (1995) and Carlström (1997) 
Carlström and Ulander (1995) developed an ice ridge °σ  model using their surface structure 
model of the ice ridges (see Chapter 4.2.2). The model is based on the incoherent (power) 
summation of the scattering contributions from discrete circular ice disks. First, an expression 
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for the mean scattering cross section σ  of a single disk is derived, then  is obtained from 
an ensemble average of the scattering from a large number of disks with random sizes and tilt 
angles. Carlström and Ulander (1995) modeled only the coherent and incoherent scattering of 
the major (front) facet the disk. Carlström (1997) further developed the model by adding the 
coherent and incoherent scattering of the circular side facet, incoherent scattering from the 
back facet and shadowing functions of the major and side facets. Only co-polarized 
backscattering is considered in the model and the difference between HH- and VV-
polarization is neglected. Also volume scattering, multiple scattering within the ice disks and 
between the disks and effect of snow cover are neglected. 

°σ

The total  of a large number of disks is (Carlström 1997): °σ

( ) ( )oooo
siscsmimcm SS σ+σ+σ+σ=°σ , (4.19)

where   and  are the shadowing functions for the major and side facets, respectively, mS sS

  and  are the coherent (specular) and incoherent (diffuse)  of the major 

facet and  and  are the corresponding components for the circular side facet. 

o
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miσ °σ
o
scσ o

siσ

The coherent and incoherent ’s are obtained as ensemble averages of the radar cross 
sections, e.g.: 

°σ

h

mc
mc A

σ
=σo , (4.20)

where  is the projection of the ice disk on the horizontal plane. hA

For a dielectric circular plate (major facet of the ice disk) with a radius much larger than the 
radar wavelength, the coherent backscattering cross section σ  for near-normal incidence is 
obtained from the physical-optics approximation (Ruck 1970) (see eq. (2) in (Carlström 
1997)). If the penetration depth in the ice disk is larger than the disk thickness then there is 
also a coherent reflection on the far side of the disk (or back facet). Since the disk thickness 
may be considered a random variable, phase interactions between the front and back facets 
will average out and the mean reflectivity is given by the incoherent model for a dielectric 
slab (Ulaby et al. 1986). The incoherent σ  is the sum of the surface scattering contributions 
from the front and back facets of the ice disk according to a layer scattering model (Fung 
1994). For the coherent  of the circular side facet, high frequency approximation for a 
circular cylinder of finite length is used (Ruck 1970). The incoherent 

σ
σ  of the side facet is 

estimated by numerical integration of °σ  with the IEM model over the circular side facet with 
a varying local incidence angle. 

When calculating , ,  and  it is assumed that the disk major facet area o
mcσ o

miσ o
scσ o

siσ A  and 
the facet slope angle are independent and the corresponding ensemble averages are computed 
independently. The slope angle is described by an isotropic 2-D joint pdf, see (4.12). For this 
pdf, the mean projected area becomes (Carlström and Ulander 1995): 

m
AAh +

=
1

. (4.21)

Now the mean scattering contribution from major facets ( + ) is independent of the 
disk area. Hence, the model is valid also for a distribution of disk sizes provided that the disks 
are large enough for the physical optics 

o
mcσ o

miσ

σ  to be valid. Additionally, the slope pdf must be 
slowly varying compared to the scattering pattern of the disk. The side facet scattering, 
however, is dependent of the relation between thickness and area of the disks. 

 33



Modeled C-band  values at low incidence angles are dominated by scattering from the 
major disk facets. At large incidence angles, scattering is reduced by shadowing, while an 
increased contribution is obtained from the side facets. However, for incidence angles below 
45º, both shadowing and side facet scattering can be ignored with little error. 

°σ

Carlström (1997) compared the model with the numerical moment method computations at  
C-band. The results showed good agreement when the imaginary part of the dielectric 
constant of ice was higher than 0.03-0.1. For lower attenuation in the disks, the backscatter 
model was found to underestimate the scattering, especially for large incidence angles. This is 
likely due to multiple scattering within the disks. 

The model was also compared with ice ridge °σ  values extracted from the ERS-1 SAR 
images. The input data to the model consisted of ground truth measurements of seven ice 
ridges in 1993 and 1994. The observed °σ  values could be explained by the model when 
taking into account an uncertainty in the model computations of ±1.5 dB due to the dielectric 
loss factor. In the range of the observed ERS-1 °σ  values, the model sensitivity to the surface 
slope parameter  was small, whereas the sensitivity to the dielectric loss was larger. The 
model result was dominated by coherent scattering from the major facets, whereas incoherent 
scattering from small scale roughness (rms-roughness from 1 mm to few centimeters) was 
important only when  was small ( <0.2). 

m

m m

Model by Manninen (1992) 
When the scatterers are smaller than the radar spatial resolution, each measured °σ  is 
correlated to an ensemble average of °σ ’s corresponding to the individual incidence angles 
along the ridge sail. Based on this, Manninen (1992) derived an ice ridge  model using her 
3-D geometrical structural ice ridge model which provides local incidence angle ( ) pdfs of 
ice ridges. Incoherent HH-, VV- and cross-polarized 

°σ

iθ
°σ ’s for the three facets of a rectangular 

polyhedron were calculated either with the small perturbation model (Manninen 1992) or with 
the IEM model (Manninen 1996b). Total coherent (specular) °σ  of ice ridge can also be 
derived in order to compare it to total incoherent °σ . Volume and multiple scattering and the 
effect of snow cover are neglected. 

The  pdf is obtained by assuming that at every ridge slope point there is a distribution of ice 
block facet orientations defined by the pdfs of the ice block Euler angles. At first, incidence 
angle  pdfs for the three ice block facet types ( bh , , ;  and  are the length and 
width of the main facet and  is the block thickness) on the proximal and distal sides of the 
ridge are obtained as histograms with a chosen bin width. The three facet types together 
produce the  pdfs for either side of the ridge. The proximal and distal distributions are then 
combined to get the total  pdf of the ridge (see equations (1)-(11) in (Manninen 1992)). As 
there is no correlation between the Euler angles and dimensions of the ice blocks, their pdfs 
can be assumed to be independent in the 
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iθ  pdf calculations. Now only the mean values of the 
ice block dimensions are needed and the Euler angle ψ  affects only the  pdfs of the minor 
facets. The shadowing effect of individual ice blocks in not included in the model, but it 
affects the results only if certain block orientations are mode probable to be shaded than other 
orientations. When the radar incidence angle is greater than 0º, as is the case always for SAR, 
only those major block facets that have the same azimuth angle as the radar wave can produce 
direct specular reflections. With this 3-D ice ridge structural model, the probability of 
specular reflection is much lower than with a 2-D model. 

iθ

Manninen (1996b) calculated the  pdfs for a ridge measured in the Bay of Bothnia in 1992. 
Calculations were conducted using the ERS-1 SAR incidence angle 

iθ

0θ  of 23º. The obtained 
incidence angles tended to be naturally larger in the distal than in the proximal side. Part of 
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the distal side was shaded when the azimuth angle 0ϕ  between the radar look direction and 
the normal of the ridge direction was close to 0º. The pdf’s were smoothest on either side of 
the sail, when  was equal to the average value of the Euler angle 0ϕ ϕ . There was a clear peak 
in the pdf’s of the main facets at about the value of 0θ , because the Euler angle pdfs were so 
broad. Similarly, there was a corresponding small peak in the side facet bh  pdf at about 90º-

. Because the pdfs of the Euler angles were so broad, there were no major differences 
between the two sides of the ridge or the different 

0θ

0ϕ  values. Ground truth data for other 
ridges produced similar total  pdfs as in this example, which was due to the broad pdfs of 
the Euler angles. Although  dominates the local 

iθ

0θ iθ  pdf’s and 0ϕ  also has a clear effect, 
these features are quite similar for all ridges and do not depend very much on the exact 
geometrical shape of the ridges. 

With the 3-D geometrical model for an ice ridge, the average value for the backscattering 
coefficient s°σ , ps = , , at an individual point on the proximal (d p ) and distal ( ) slope 
of an ice ridge is: 
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where ,  and  denote the separate pdf’s for the Euler angles and ( )θsf1 ( )ϕsf2 ( )ψsf3 ( )iθ°σ  is 
the backscattering coefficient of a facet with incidence angle iθ . 

If ice ridge  is compared to level ice °σ °σ , it has to be calculated at a certain slope point and 
related to its projection area at the horizontal plane. As the ice blocks of a ridge sail partly 
overlap, the total projection area is not simply the sum of individual projection areas. This is 
taken into account by modifying the denominator of (4.22), see (Manninen 1992, eq. (14) and 
(15)). Finally, the  values at various slope points are integrated. The results for the 
proximal and distal sides are then combined to give the total average incoherent  per unit 
horizontal area of a ridge: 
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The coherent (specular)  of an ice block facet is obtained with the  for a dielectric 
rectangular plate (Ulaby et al. 1982). The total coherent 

°σ °σ
°σ  is approximated as: 
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Calculation of the total coherent  is numerically very demanding since the  function for 
the rectangural plate is steeply peaked. 

°σ °σ

With all calculated  pdf’s of different ice ridges, the incoherent total  was a few dB 
larger than the total coherent  (Manninen 1992, 1996b). Additionally, the general behavior 
of the total  was dominated by surface scattering at both co- and cross-polarization. These 
results were obtained with a rather coarse resolution of 2º for the incidence angle 
distributions, but likely a finer resolution would not increase the importance of the coherent 

. The qualitative similarity of co- and cross-polarized 

iθ °σ
°σ

°σ

°σ °σ ’s supports the idea that the 
coherent  is not the dominant one, as the cross-polarized °σ °σ  has no coherent component. 
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The incoherent  depends mostly on the ice block surface roughness, secondly on the block 
 and the least on the ridge geometrical parameters (e.g. Euler angle pdf’s). The  contrast 

between level ice and ice ridge is the largest at cross-polarization. For all measured ridges the 
average  was closer to 0º than 90º which yields slightly larger 

°σ

rε °σ

ϕ °σ  when radar is viewing 
across the ridges than it is viewing along them. 

Using their 2-D ice ridge  model, Carlström and Ulander (1995) concluded that the 
coherent component of the total  is typically the dominant one. According to Manninen 
(1996a), this was based on the wrong assumption that 2-D joint pdf of the ice block facet 
slopes is azimuthally isotropic, i.e. that it is possible to obtain the slope pdf from just 1-D 
profile measurements of ice ridges (surface profiles yield the slope values of lines projected 
on the ice blocks, but these do not present the inclination of the actual ice block surfaces). 
Generally, both models are too complicated for inversion of ice ridge parameters from SAR 
data and they can be mainly used to study the effect of various parameters on coherent and 
incoherent  components. 

°σ
°σ

°σ

4.4 Backscattering Signatures 
Empirical backscattering signature studies of the Baltic Sea ice have been previously 
conducted using (1) helicopter-borne scatterometer data (Hyyppä and Hallikainen 1992, 
Hallikainen and Toikka 1992, Similä et al. 2001), (2) airborne SAR images (Kemppainen 
1989, Carlström 1990, Sun et al. 1992, Dierking and Askne 1998), and (3) ERS-1 SAR 
images (Dammert et al. 1994, Lundin 2001). The scatterometer data were acquired in 1988, 
1990 and 1991 with the HUTSCAT (Helsinki University of Technology Scatterometer)        
C- and X-band quad-polarization scatterometer. The airborne SAR images were acquired with 
SAR systems operating at L-, C- and X-bands during BEPERS-87/88 (Bothnian Experiment 
in Preparation of ERS-1) and EMAC-95 (European Multisensor Airborne Campaign) 
campaigns. Some of the airborne SAR systems did not have cross-polarization measurement 
capability. The amount of L-band data is very small and most of it were acquired with the 
polarimetric EMISAR radar. Backscattering signature studies using RADARSAT-1 and 
ENVISAT SAR images have not yet been published. 

Below, the main results of the C- and X-band °σ  signature studies with non-polarimetric 
radars are first discussed. This is followed by a review of studies on the L- and C-band 
polarimetric discriminants and the comparison of °σ  data with weather data. 

4.4.1 C- and X- band signatures 
The mean  at all C- and X-band polarizations increases with increasing ice deformation 
and decreases with increasing incidence angle 

σ°

0θ  (Kemppainen 1989, Hyyppä and 
Hallikainen 1992, Hallikainen and Toikka 1992, Dammert et al. 1994). The contrast between 
open water and level ice is around 3 dB higher at C-band VV- than at VH-polarization 
(Carlström 1990), whereas that between deformed ice and level ice is at VH-polarization even 
10 dB higher (Carlström 1990, Hyyppä and Hallikainen 1992). Mean  for ice ridges 
showed considerable azimuthal angle dependence at X-band co-polarization; it was 3 dB 
higher across ice ridges that along them (Hyyppä and Hallikainen 1992). 

σ°

The standard deviation of texture  (see (3.3)) was on the average the largest for ridged ice 
and the smallest for jammed brash barrier (Dammert et al. 1994). For level ice types the 
variation of  was large.  decreased when snow wetness increased. For deformed ice 
types the mean  was generally higher at VH- than at VV-polarization (Carlström 1990). 

sT

sT sT

sT

In all previous studies ice type discrimination results with a single channel  were usually 
poor. In Hyyppä and Hallikainen (1992) and Hallikainen and Toikka (1992) cross-polarized 

σ°
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σ°  provided better results than co-polarized σ°  and their combination gave the best results. 
Sometimes even all ice types (total number from three to six) were discriminated. The results 
of the ice type discrimination usually improved with increasing 0θ  (Carlström 1990, 
Hallikainen and Toikka 1992). According to (Hyyppä and Hallikainen 1992) and (Hallikainen 
and Toikka 1992) X-band provides slightly better discrimination results than C-band. In 
(Carlström 1990) and (Sun et al. 1992) combined use of mean and standard deviation of σ°  
did not increase the number of discriminated ice types, although the separation between some 
ice types increased a little. However, in (Dammert et al. 1994) a total of seven ice type classes 
in the ERS-1 data had more or less clearly separated signatures in the mean σ°  vs.  
coordinates under dry snow condition. Under wet snow conditions only smooth level ice and 
ridged ice were discriminated. General classification rules for several ice seasons based on the 
mean  vs.  would only be able to discriminate three (level ice, deformed ice, very 
deformed ice) and two (level ice, deformed ice) ice classes under dry and wet snow condition, 
respectively. Open water leads were not discriminated from sea ice. 

sT

σ° sT

The BEPERS-88 C-band SAR and the ERS-1 SAR results for the mean  are generally in 
agreement with the previous HUTSCAT results. The differences are most likely due to the 
different ice type definitions and the small data amounts. 

σ°

More complex statistical analysis of the C-band HH-polarization σ°  signatures acquired with 
HUTSCAT was conducted in (Similä et al. 2001). There a hierarchical Bayesian model for 
the estimation of ice surface roughness was constructed. Using the Markov Chain Monte 
Carlo (MCMC) methodology the posterior distribution of the central model parameter related 
to surface roughness was numerically approximated. The results provided by the statistical 
model showed good agreement with a video-based ice type classification, and their 
geophysical interpretation is possible. It was also demonstrated how using the determined 
posterior distribution it is possible to examine such questions as given the scatterometer 
measurements, how many highly deformed ice fields exceeding the specified diameter is 
encountered when moving along a line, and what is the uncertainty of the obtained estimate. 
Also some suggestions to extend the method for SAR images were given. 

4.4.2 L- and C-band polarimetric discriminants 
The first and so far the only polarimetric SAR images over the Baltic Sea ice were acquired in 
1995 by Danish airborne EMISAR radar (Dall et al. 1997). EMISAR and the image data set 
are described in Chapter 5.1.4 (the same data set was also used in [P2]). 
Dierking and Askne (1998) studied polarimetric discriminants using one L- and one C-band 
image acquired in March 1995 in the Bay of Bothnia. The polarimetric data were in the multi-
looked covariance matrix format. The following five ice classes were visually identified in the 
images: dark, average and bright level ice, moderately deformed ice (fragments of level ice 
are present), and heavily deformed ice (no embedded level ice). Altogether 150 windows of 
size 441 pixels were randomly distributed over these ice types. Backscattering coefficients, 
co- and depolarization ratio ( oo

HHVVcoR σσ=  in here, ) and phase difference  
were then calculated using the average covariance matrix elements of the windows. 

depolR VVHH−φ

At L-band VV-polarization (HH- and VH-polarizations not discussed) dark and bright level 
ice patches were well separated from the average level ice with the level of . At C-band the 
data points of the three level ice classes partly overlapped. According to a single 
backscattering model (contributions from ice surface, ice volume and ice-water interface 
backscattering was dominated by the ice-water interface at L-band, and by the ice surface at 
C-band. At L-band  for level ice types was around 1.0, whereas at C-band  was larger 
than 1.0 and increased with increasing 

°σ

coR coR

0θ  (roughly from 1.2 to 1.6). At both bands  was depolR
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rather constant at around 0.1. Both  and  did not separate the three level ice types. 
Level ice  at C-band varied from -10º to +10º and at L-band from 0º to 30º. At both 
bands  increased slightly with increasing 

coR depolR

VVHH−φ

VVHH−φ 0θ . The observed VVHH−φ  at C-band was 
explained with dominating ice surface scattering and the L-band one by an anisotropic 
character of the ice layer close to the ice-water interface. 

The  contrast between level ice and deformed ice types was much larger at L-band than at 
C-band. Additionally, at L-band the contrast at cross-polarization was clearly larger than at 
co-polarization.  and  revealed no differences between the deformed ice types. At  
L-band  was from 0.8 and 1.0 and at C-band from 0.7 to 1.1.  values smaller than one 
may indicate the dominance of double bounce or coherent scattering from ice blocks. At      
C-band  was around the same (0.1±0.05) for level and deformed ice types, but at L-
band it was larger (0.2) for deformed ice. This indicated that multiple scattering processes 
within deformed ice were stronger at L-band. At L-band 

°σ

coR depolR
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depolR

VVHH−φ  was scattered around zero 
and at C-band it was from -10º to +5º. 

4.4.3 Comparison between backscattering signatures and weather data 
Lundin (2001) compared  values derived from ERS-1 SAR time series with air temperature 
from a coastal weather station. The SAR data set consisted of 17 images acquired over the 
northern part of the Bay of Bothnia during January 13 - April 7, 1994. Based on the image 
and air temperature ( ) data, the time series was divided into two phases; the cold phase 
( <-1ºC), covering the first 16 images (up to March 26), and the warm phase ( >0ºC) 
consisting of the last image. Nineteen test sites of various ice types were selected on fast ice 
area. Time series of the mean  values of these test sites were then compared with . The 
results indicated a decreasing  trend with increasing  under cold conditions. Very rough 
ice (average slope -0.03 dB/1ºC) was slightly more sensitive than smooth ice (-0.02 dB/1ºC) 
to a  change. In case of the smooth ice, it was speculated that the ocean heat flux through 
the relatively thin Baltic Sea ice increases snow moisture near the ice surface when air 
temperature increases, leading to an increased absorption of the SAR signal. The surface 
temperature of deformed ice possibly adjusts more easily to the ambient air temperature than 
smooth ice due to the larger ice thickness and deformed ice structure which reduces ocean 
heat flux to the ice surface. From cold to warm phase 
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°σ  for all ice types clearly decreased 
due to the decrease in ice surface scattering. The decrease was larger for rough ice than for 
smooth ice as wet snow cover makes rough ice areas look much smoother. 

In connection with operational use of SAR images it has been observed that under warm 
conditions (temperature > 0ºC; snow cover is wet) the overall SAR intensity and texture are 
much reduced compared to those under cold conditions. 

4.5 Sea Ice Classification by Spaceborne SAR Images 
Studies conducted on the classification of the spaceborne SAR images of the Baltic Sea 
started in the early 1990’s as the ERS-1 satellite was launched and have been continued since 
then. The performed studies can be divided into following subjects: (1) classification of ice 
types, (2) open water – sea ice discrimination, (3) sea ice thickness estimation, and (4) sea ice 
dynamics. Most of this research work has been conducted by Finnish Institute of Marine 
Research (FIMR). FIMR’s major goal has been to develop operational Baltic Sea ice products 
which are easy to use and informative for end-users. Currently, operational sea ice products 
based on RADARSAT-1 ScanSAR and ENVISAT ASAR Wide Swath Mode images are 
provided by FIMR. 
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4.5.1 Classification of various ice types 
Already the pilot studies with airborne SAR data indicated that the SAR intensity value alone 
is not sufficient to discriminate between different ice types, e.g. (Kemppainen 1989). Hence, 
additional ways to describe the sea ice SAR signature properties have been tried in the studied 
classification schemes. In (Similä and Helminen 1995) the wavelet transform was utilized to 
characterize the local statistics typical for different ice deformation categories. The 
distribution of wavelet coefficients was modeled using the mixture of three normal 
distributions. The class parameters were estimated applying a stochastic version of the 
expectation-maximization (EM) algorithm. The ice chart was formed with the maximum 
likelihood classification. This leaded to an operative sea ice classification algorithm for the 
ERS-1 SAR data when the open water identification based on the blockwise autocorrelation 
was added (Similä 1996). The accuracy of the results was assessed by visual interpretation 
and with comparison to the FIS ice charts. The small coverage of the ERS-1/2 SAR images 
(100 km by 100 km) was a problem which was overcome by the RADARSAT-1 ScanSAR 
images. These images became the most important sea ice information source in the Baltic Sea 
and generated an extensive sea ice mapping research work. 

Karvonen (2004) developed a method for segmentation and classification of the Baltic Sea ice 
SAR images, based on Pulse Coupled Neural Networks (PCNN's). The segmentation method 
includes an automated training, based on decomposing the total pixel value distribution into a 
mixture of normal class distributions. The algorithm has especially been developed, trained 
and tested using logarithmic scale Radarsat-1 ScanSAR Wide images (delivered by KSAT in 
Tromso, Norway) with 100 m pixel size. 

Prior the segmentation an incidence angle correction, specifically designed by Karvonen et al. 
(2002) for the Baltic Sea ice SAR images, is applied. This correction is based on the results of 
[P3]. The estimation of the class parameters and boundaries, i.e. the training phase, is based 
on the assumption of the mixture of normal distributions and the EM algorithm. The 
contextual information used in the classification/segmentation step is provided by the PCNN 
scheme. Currently, the algorithm has been trained for dry snow conditions only. The number 
of classes is fixed to six based on the number of modes in the total data distribution. This 
figure approximately corresponds to the number of sea ice classes in [P1] and also 
approximately to the number of classes that can be distinguished from SAR images based on 
backscattering. The classes are manually assigned to various ice types by comparing the 
classified SAR image to the FIS ice chart and original SAR image. The geophysical 
interpretation of the classes is basically just that the degree of deformation (surface 
roughness) increases as the class mean intensity increases. Fast ice areas, with lower surface 
roughness and thus lower backscatter than thinner deformed ice areas, can cause 
misclassification of the thicker fast ice to the thinner smooth ice classes. However, this can be 
corrected (1) by using a fast-ice recognition algorithm (Karvonen and Similä 1999) and       
(2) the location of the fast ice typically does not change rapidly. Fast ice is a seventh class in 
the final classification. 

The segmented SAR image is also an input image for open water – sea ice discrimination 
algorithm, see below. Typically the SAR-based sea ice features computed by FIMR 
algorithms are segment-wise rather than pixel-wise, because fading corrupts pixel-wise 
intensity values. 

Carlström and Ulander (1995) presented a semi-empirical inversion model for estimating sea 
ice surface rms roughness  from  values in the ERS-1 SAR images. The model is based 
on the assumption that  is only dependent on  and the radar incidence angle , when 
snow cover is dry. For  values below around -12 dB which are typical for level ice,  is 
estimated with a theoretical  model consisting of ice surface and volume scattering 
components (see Chapter 4.3.1). For ice volume parameters and ice surface correlation length 
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averages of measured values are adapted. The maximum value of  with the level ice model 
is 5 mm. For deformed ice with  values over -10 dB,  is estimated with an empirical 
relation between  and  and . This model yields  values over 15 mm. The gap between 
the level and deformed ice models (  from 5 to 15 mm) is bridged by linear interpolation in 
log-log space. The standard deviation between the measured  and the model estimate was 
approximately ±50%. The main limitations of the inversion model are that snow cover must 
be dry,  must be larger than 1 mm, and ice salinity above 0.2‰ for ice surface scattering to 
be dominant. Thus, for low salinity fast ice the inversion model overestimates . 

s
°σ s

°σ s 0θ s
s

s

s
s

4.5.2 Open water – sea ice discrimination 
Usually there is more structural information in the pixel patterns originating from sea ice 
fields than in the pixel patterns over open water. The latter ones are often relatively 
structureless, depending, however, on wave conditions and currents. This observation can be 
quantified using the spatial autocorrelation measure (Similä 1994). There the classification 
accuracy in the open water – sea ice discrimination was determined for a limited ERS-1 SAR 
image set (100 m resolution) when the pixel block size is increased and the autocorrelation 
threshold is kept fixed (0.2). In that data set almost no ice area was classified into open water 
when the block size increased enough (15 by 15 pixels or larger) and few open water areas, 
well below 10 %, were classified as ice. The proposed classification scheme consisted of 
intensity values with the autocorrelation measure being a part of the contextual information. 
The classification maps were obtained using the ICM algorithm. 

Using the autocorrelation as a discriminant an operative and thoroughly validated algorithm to 
separate ice and open water in the RADARSAT-1 ScanSAR images was developed by 
Karvonen et al. (2005). The SAR image to be classified is first segmented with the PCNN 
algorithm (Karvonen 2004), and the autocorrelation is computed for the segments rather than 
for pixel blocks. The autocorrelation of a segment is the mean of the local autocorrelation 
over the segment. The segmentation is further refined by a segmentation based on local 
autocorrelation. The size distribution of the resulting segments varies highly depending on the 
ice conditions, the range being from 1 km2 to several thousand km2. The largest segments 
occur in the open water areas. The algorithm first uses a lower threshold to define whether a 
segment certainly contains open water (autocorrelation smaller than threshold) or not, and 
then tests the adjacent segments to the open water segment for the upper threshold and, if the 
values are less than the upper threshold, the open water area is expanded by these segments. 
Only one such expansion pass is performed. Finally, a filtering step is performed, and open 
water segments with a size less than a given size threshold are set to ice, unless they are long 
and narrow, corresponding to typical shape of leads. 

The algorithm performance under both dry and wet snow conditions was evaluated by 
comparing the results with the RADARSAT-1 ScanSAR Wide images to the FIS digitized ice 
charts, in which the sea ice information is based on human interpretation of multiple data 
sources, including remote sensing data. The algorithm agreed with the location of open water 
and ice in the ice charts with about 90% and 80% accuracy, respectively. Especially large 
open water areas were very well distinguished. The validation confirmed that autocorrelation 
is not very sensitive to ocean wave conditions and radar incidence angle. 

Lundin (2001) studied the derivation of the Baltic Sea ice concentration from Radarsat-1 
ScanSAR Narrow images, based on the local mean backscatter threshold between open water 
and sea ice (Dokken et al. 2000). The threshold is a linear function between  and pixel 
intensity and it is determined from manually extracted water and ice pixel values typical for 
different areas. The exact location of the threshold is fine tuned by minimizing the number of 
the misclassified manually chosen pixels. Based on the threshold each 50 by 50 m pixel is 
given the value of ice or water. Sea ice concentration is then estimated by averaging classified 
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pixels over a chosen pixel block. Typically, new ice is non-separable from calm open water 
due to its low backscatter intensity. Another ice type which does not differ in mean 
backscatter from a calm water surface, is smooth level ice mostly situated within the fast ice 
zone. In order to prevent misclassification, the land fast ice is masked by the 10 m bathometry 
data that is assumed to cover the main part of the land fast ice areas. Furthermore, large open 
water areas with high backscatter due to wind induced roughness are manually masked. Under 
wet snow condition it is more difficult to discriminate between open water and ice pixels. 

4.5.3 Sea ice thickness estimation 
Karvonen et al. (2003) developed an algorithm for sea ice thickness estimation by refining the 
sea ice thickness information present in a daily digitized FIS ice chart using RADARSAT-1 
ScanSAR Wide and ENVISAT ASAR Wide Swath images. The SAR based ice thickness 
maps in 500 m resolution are provided operationally and are available for users shortly after 
the SAR data are received. 

First, an incidence angle corrected SAR image (Karvonen et al. 2002) is segmented with a 
slightly modified isodata clustering algorithm. After segmentation each SAR segment is 
compared to the segments in the ice thickness map. If over 50% (current limit) of a SAR 
segment is covered by one thickness segment, this thickness segment is extended to cover the 
whole SAR segment, otherwise the thickness segment remains unchanged. This step defines 
anew the boundaries of a thickness segment. Then the thickness values are linearly mapped 
such that the minimum thickness is mapped to correspond to the minimum SAR segment 
intensity mean and the maximum thickness to correspond to the maximum SAR segment 
intensity mean inside the same thickness map segment. This procedure is typically applied to 
a thickness map and a SAR image originating from the same day, producing a map called a 
refined ice thickness map. If only an ice chart from previous day is available then this 
procedure can be utilized to give an estimate for the current ice thickness distribution. The 
estimation works well if only minor changes in the ice conditions between the SAR 
acquisition and the ice thickness chart have occurred. However, changes in ice conditions can 
be radical due to the dynamic nature of drift ice fields. Errors produced by ice movement are 
reduced by masking off open water areas in the refined ice thickness map using the open 
water – sea ice discrimination map. 

Karvonen et al. (2004) compared Radarsat-1 ScanSAR Wide image data pixel values, FIS ice 
thickness charts and the refined thickness charts to sea ice thickness measurements with a 
helicopter-borne electromagnetic induction (EM) based sensor. The EM sensor operated by 
Alfred Wegener Institute and the ice thickness measurement principle are described e.g. in 
(Haas 2006). The EM data resolution is around 30-40 m and the spatial sampling rate is 3 to  
4 m. For level ice the accuracy of the EM thickness measurements is about 10 cm (Haas 
2006). For ridged ice the accuracy is weaker due to water appearing between ice blocks, 
resulting in a systematic underestimation bias. However, almost always the occurrence of an 
ice ridge can be detected. 

The data sets were acquired in February 2003 in the Bay of Bothnia and in the Gulf of 
Finland. Based on the EM data, sea ice was coarsely divided into three categories: level ice by 
thermal growth (thickness less than 50 cm), rafted ice (50-100 cm), and ridged ice (>100 cm). 
Additionally, there was also open water category. The dynamic range of the SAR pixel values 
was first divided into 15 equal-sized bins. Then, given a fixed bin, a conditional distribution 
of the three ice thickness categories was computed. It was observed that the fraction of small 
ridges (rafted ice) remained relatively constant (about 30%) independent of the SAR pixel 
value. On the other hand, the area covered by large ridges grew almost linearly from 0-10 % 
at very low pixel values to 90-100 % at the highest values. The fraction of level ice decreased 
from 70% at low pixel values to less than 10 % at high values. Only weak correspondence 
was observed when comparing the data sets pixel by pixel, i.e. the correlations between the 
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SAR data or the operational ice charts and the EM data were relatively low. This ambiguity is 
partly due to ice movement between the SAR data acquisition and EM measurements, and 
possible registration inaccuracies between the data sets. Furthermore, quite different ice 
conditions can give similar  signatures [P1]. Comparisons of the data sets indicated that the 
refined thickness chart shows better the local mean ice thickness than the original thickness 
chart. In summary, based on a sample of SAR intensity values, it is possible to assign a crude 
estimate of the ice type distribution for the ice field from which this scattering originates. This 
assignment requires a priori knowledge about the order of ice thickness. 

°σ

Similä et al. (2006) developed an algorithm for direct derivation of the ice thickness from the 
SAR images in order to include information about the degree of ice deformation into the SAR 
refined thickness charts. A SAR image is first segmented, and then an ice thickness 
distribution is assigned to each segment. The algorithm was developed using EM data and 
four ENVISAT ASAR alternating polarization precision (APP) images at HH- and VV-
polarization acquired in March 2005 in the Bay of Bothnia under dry snow conditions. 

The segmentation of the APP images is performed using both HH and VV channels. First, 
both channels are filtered using anisotropic diffusion filtering, and then a 2-D k-means 
clustering for all the pixel pairs is performed. A post-filtering operation joins all the segments 
whose size is less than a threshold to neighboring segments. Finally, segment mean images 
for the filtered segmentation are computed for both channels. 

The total ice thickness distribution is estimated by assigning an ice thickness distribution  
to each  (in dB), rounded to the nearest integer. The segment-wise ice thickness 
distribution is formed as a mixture of different conditional densities , where the densities 
are weighted by the relative occurrences of each 

kf
°σ

kf
°σ  value in the segment. These procedures 

require construction of a conditional ice thickness distribution given a certain  value, i.e., it 
is assumed that if a given  value occurs the thickness of the underlying ice field is assumed 
to vary according to the corresponding . Validity of this approach essentially depends on 
how representative the EM data set is. The ice thickness distribution is modeled as a mixture 
distribution of two components. One component describes the thickness distribution in the 
level and rafted ice areas which thickness less than 100 cm, the other component describes 
thickness distributions for the rest of the thickness values (mainly ridged ice). The proportion 
between level/rafted ice and ridged ice is controlled by a mixture parameter, which describes 
the relative fraction of ridged ice and is a linear function of 

°σ
°σ

kf

°σ . In the March 2005 data set, 
the shape of the total thickness distribution varied strongly with the °σ  value (see Fig. 2 in 
(Similä et al. 2006)). 

In the whole March 2005 data set, the measured and estimated marginal ice thickness 
distributions were quite close to each other. This indicated that the training data set for  
was large enough to cover most of the ice conditions present in the test area. The largest 
differences between measured and estimated values occurred in areas where the  values 
were high (low) but the EM data indicated thin (thick) ice. The proposed approach predicts 
too large (small) ice thickness in these cases. The segment-wise thickness distribution 
estimates usually had the same form as the measured ones. The largest errors occurred in the 
areas where the backscattering strength constantly remained relatively high (above -14 dB) 
but the EM measurements indicated thin ice. 

kf

°σ

4.5.4 Sea ice dynamics 
Sea ice dynamics can be observed from time series of SAR images by tracking spatial 
displacements of geometric features like large ice floes, ice floe edges and large ice ridges. So 
far few studies have been conducted for the Baltic Sea ice. The most recent results were 
presented by Leppäranta et al. (1998). They estimated sea ice dynamics from three ERS-1 
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SAR image pairs acquired in February and March 1994 with either 3 or 6 day time interval 
using an optical-flow algorithm presented in (Sun 1996). The algorithm has two steps:  
(1) derivation of the first-order motion vectors which are related to rigid motion (translation 
and deformation) and which describe the large-scale displacement of the ice pack, and  
(2) derivation of the higher-order motion or the deformation which is due to non-rigid motion 
(for details see (Sun 1996)). Before analysis, the SAR images were averaged to pixel size of 
400 by 400 m. In all three SAR image pairs the estimation of the mean ice velocity fields was 
successful. Air temperature was well below 0ºC in all cases suggesting that the snow cover on 
ice was dry, i.e. the main backscattering source was the ice surface. The total error in the 
displacements was around 0.9 km. The actual displacements were an order of magnitude 
larger. 

The observed ice velocities showed a considerable stiffening of the ice pack as the minimum 
ice thickness increased from 10 to 30 cm. This is due to the change in the character of ice 
deformation under compression from rafting to ridging. An analysis of the SAR based ice 
velocity fields with a numerical ice dynamics model based on the viscous-plastic ice rheology 
allowed estimations of the compressive strength of the ice and the ratio of compressive 
strength to shear strength. It was concluded that a SAR repeat cycle of 3 days is good for 
updating an ice dynamics model but for detailed ice-dynamics investigations a data frequency 
of once per day is preferable. 

4.6 Sea Ice Classification by SAR Interferometry 
Dammert et al. (1998) studied the use of SAR interferometry (InSAR) for remote sensing of 
the Baltic Sea ice. Before describing their results, the basics of the InSAR are briefly 
presented. 

InSAR is a technique where at least two SAR images acquired over the same target with 
slightly different radar positions are combined into an interferogram which contains 
information on target geophysical properties. For a stable surface, the phase of the 
interferogram is related to the large scale topography, e.g. (Graham 1974, Zebker and 
Goldstein 1986). For a large unstable surface, consistent displacements of that surface also 
affect the phase, and thus multiple SAR images can be used to detect surface changes over 
larger areas. The interferogram is produced by multiplication of the two complex SAR images 
(either one is conjugated), pixel by pixel, and then the phase is extracted. The equation for the 
interferometric phase in repeat-pass InSAR after correction for the phase difference for the 
flat Earth (surface reference) is (Dammert et al. 1998): 
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where  is the baseline normal to the line of sight, nB R  is the average satellite-to-surface 
distance,  represents the topographic height relative the reference surface,  represents a 
small temporal movement of large objects between the image acquisitions in the radar look 
direction, and  is the phase noise due to temporal changes of scatterers and radar system 
noise. There is a general  ambiguity associated with all phase measurements. In general, 
measurements of both surface elevations and small displacements are possible with repeat-
pass InSAR.  can be either horizontal, vertical or a combination of both. The sensitivity to 
the surface topography increases with the baseline while the sensitivity to surface movements 
is independent of it. Thus, repeat-pass InSAR with a small baseline is good for surface 
displacement maps. 
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InSAR technique provides also a measure of the interferometric coherence, i.e. the degree of 
correlation between two images (Born and Wolf 1980): 
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=γ . (4.26)

The coherence image is formed by replacing the ensemble averages with spatial averages in 
(4.26). The coherence  is related to volumetric scattering effects and changes of scatterers 
between acquisitions, i.e. volume and temporal decorrelation, e.g. (Gatelli et al. 1994). The 
temporal decorrelation can be caused by two things, movements of scatterers and changes of 
scatterers. With only small random movements of the scatterers, it is possible to interpret  as 
a measure of such movements. If the volume decorrelation is insignificant, as is the case for 
the thin Baltic Sea ice, then  is determined by the temporal variation of the dominating 
scatterer (e.g. ice surface scattering), and thus it can be used to characterize the backscattering 
properties of different ice types. (Dammert et al. 1998). 

γ

γ

γ

Dammert et al. (1998) acquired three ERS-1 SAR images on 24, 27 and 30 March, 1992, over 
the Bay of Bothnia under dry snow conditions. Three interferograms and three coherence 
images were calculated from the SAR images. All interferograms had a relatively small 
baseline, and thus low sensitivity for ice topography and good for ice displacement maps. The 
resolution of the interferograms is at best 1 mm for relative surface displacements. A 40 km 
by 40 km area from the northern Bay of Bothnia, containing mainly landfast ice, was selected 
for detailed studies. 

For low salinity smooth fast ice, a decreasing  trend with increasing γ °σ  was observed. For 
this ice type the total °σ  is a combination of ice surface and ice-ocean interface scattering 
(Carlström and Ulander 1995). With °σ  increasing due to the ice-ocean interface scattering 
there is a possibility of multiple coherent scattering between the ice surfaces, which increases 
the sensitivity to temporal changes, yielding smaller . For rougher ice areas with dominating 
ice surface scattering  varied relatively little. Also snow cover seemed to retain  over these 
ice areas. 

γ
γ γ

Discontinuities in the interferograms showed slip lines in deformation of the fast ice zone. 
Smoother transitions were due to ice topography and deformation, but the interferogram 
structure suggested that a significant part of the phase shift must have been due to horizontal 
ice deformations. With this assumption, it was possible to calculate horizontal deformation 
maps of the fast ice. These maps show where strains occur in the ice pack and can be valuable 
in prediction of ice ridging and opening of new leads. It is possible, however, that some very 
local topographics effects over ice ridges also exist in the interferograms. Assuming that the 
phase shift over the ridge originates just from the ridge topography, it is possible to measure 
the ridge height. 

It is possible to apply a geophysical interpretation of the horizontal ice deformation maps. 
Small horizontal shifts result as a response of the ice to stresses which are below the plastic 
yield limit (ice field starts to drift). The stresses may be caused by winds, currents and sea 
level tilt. When the stresses are below the plastic yield limit, the displacements are elastic 
strains or viscous creeps within meters or so. The transition of when and how the (nearly) 
stationary ice starts to drift is a major problem in sea ice mechanics. With the horizontal ice 
deformation maps it is possible to study the nearly stationary state (for details see (Dammert 
et al. 1998)). In this case study, the ice was nearly stationary as the stresses were below the 
yield limit. Two ice floe compressions were observed and the strains were believed to be 
viscous. 
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Dammert et al. (1998) suggested that InSAR data are very valuable for theoretical °σ  
modeling and sea ice mechanics studies. 

4.7 Sea Ice Properties with Radar Altimetry 
Radar altimeters can measure the surface elevation of the sea ice sheets. These data can be 
converted to an estimation of sea ice freeboard, which together with estimated ice density and 
snow load on sea ice provide estimations of sea ice thickness and mass. Combined with ice 
movement from other EO data, like consecutive SAR images, net sea ice volume and area 
fluxes are obtained. Empirical data on sea ice thickness, mass and fluxes are very important 
for sea ice climatology, dynamics and thermodynamics studies. Naturally, sea ice thickness 
data is also important for ship navigation. 

So far the spatial resolution of spaceborne radar altimeters has not been really adequate for 
sea ice studies, but Cryosat-2, to be launched in March 2009, will fill the resolution criteria 
(the launch of CryoSat on October 8, 2005, failed). Cryosat-2 combines conventional pulse-
limited altimeter hardware with new synthetic aperture and interferometric signal processing 
(Drinkwater et al. 2004). These new features will allow CryoSat-2 to systematically monitor 
changes in the sea ice thickness when snow load and ice density estimations are available. 
The capability of CryoSat-2 to estimate the Baltic Sea ice thickness will be very likely lower 
than for the Arctic and Antarctic sea ice due to the dynamic nature and small freeboards of the 
Baltic Sea ice. 

A few radar altimetry studies of the Baltic Sea ice have been conducted. Ulander and 
Carlström (1991) analyzed Geosat altimeter data acquired over the Baltic Sea ice during the 
BEPERS-88 field campaign. The purpose was to find out the main backscatter mechanism 
(coherent/incoherent) for radar echoes scattered from sea ice at normal incidence angle by 
comparing Geosat data to a theoretical backscattering model. Retrieval of sea ice thickness 
was not studied. Geosat was Ku-band (wavelength 2.2 cm) pulse-limited altimeter. The 
altimeter footprint had a diameter of 1.7 km and the diameter of the first Fresnel zone 
( λH2 ) was 190 m. 

The coherent  was modeled with (Brown 1982), (Ulander 1987): °σ
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and the incoherent  with (Ulander 1987): °σ
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where  is the Fresnel reflection coefficient, )0(R τ  is the compressed radar pulse length, H  is 
the altimeter altitude,  is the speed of light, and c F  is the fractional area coverage of the flat 
dielectric mirrors over the first Fresnel zone. 

Sea ice surfaces can be considered rough at Ku-band. To produce a truly coherent (specular) 
reflection, the surface must have height variations less than 10/λ  over the first Fresnel zone. 
In the incoherent model, the surface is considered to be inhomogeneous with a small area 
fraction consisting of flat patches with rms height less than ~ 10/λ  and extending over a few 
meters. The patches are assumed to be horizontal, but the patch height distribution is not 
restricted. For simplicity, the patches are assumed to be circular. 

The Geosat data were classified into four ice types based on interpretation of an airborne SAR 
imagery: smooth and rough young ice, thin ice and deformed ice. Both young and thin ice 
types had altimeter echo waveforms which were narrow peaked and approached the system 
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impulse response. With the mean and std statistics of °σ  all four ice types were quite well 
discriminated. Based on the inversion of F  from (4.27) and (4.28) it was not possible 
determine whether the backscatter mechanism was coherent or incoherent. With the coherent 
model the estimates for F  are very sensitive to the value of . Comparison between 
empirical and simulated Geosat data for a frozen lead indicated that the normal incidence 

s
°σ  

was caused by incoherent scattering. It was hypothesized that the incoherent backscatter 
originates from many flat and horizontal patches on the inhomogeneous ice surface. 

The first, and so far the only, attempt of measuring sea ice freeboard in the Baltic Sea using 
altimeter data is discussed in (Ulander 1991). The altimeter data were acquired with Geosat 
over heavily deformed ice in March 1988. The height of the level young and thin ice was used 
as a reference level. The height profile was smoothed over 4.7 km of data with a resulting rms 
height error of 11 cm over level ice (see Figure 6 in (Ulander 1991)). 

4.8 Brightness Temperature Signatures 
The feasibility of using UHF (300 MHz – 3 GHz) and low frequency microwave radiometers 
for determining the ice thickness of the Baltic Sea ice has been investigated in (Tiuri et al. 
1976, 1978) and (Hallikainen 1983) (a summary is in (Hallikainen 1992)). At UHF and low 
microwave frequencies low salinity Baltic Sea ice is a nonscattering, low-loss medium, and 
thus the phase coherence of the electromagnetic waves propagating in the sea ice layer is 
preserved. Due to coherent wave reflections within the ice layer, the brightness temperature 

 oscillates strongly as a function of ice thickness . A local maximum in  is predicted 
for the nadir angle when  is an odd number of quarter wavelengths and a local minimum 
when  is an integral number of half wavelengths. Thus, the relationship between  and  
is not unambiguous and retrieval of  from  data is not straightforward. According to 
theoretical  modeling,  has the highest sensitivity to the ice salinity (Hallikainen 1983). 
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The measured  at 610 MHz (helicopter-borne radiometer) as a function of  was observed 
to follow closely the theory. At a higher frequency of 5 GHz,  saturated for small ice 
thicknesses and it is determined primarily by the dielectric properties and surface roughness 
of the snow and sea ice layer (case of incoherent scattering). The  results at 610 MHz 
suggested that, due to the smoothing effects in  data caused by antenna beamwidth and 
moving helicopter,  can be determined with a single channel radiometer with reasonable 
accuracy. The accuracy of the  retrieval can be increased by using either a broadband UHF 
radiometer or a multichannel radiometer. The use of broadband radiometers is not possible 
due to the presence of man-made noise sources, like television transmitters. In the 
multichannel radiometer system, the frequencies must be selected properly in order to achieve 
an unambiguous relation between  and . With a UHF radiometer system having 
frequencies 530, 780 and 930 MHz an accuracy of ±20 cm was obtained when the local 
variations in the ice salinity, surface temperature and snow thickness were approximately 
known (Hallikainen 1983). 
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Kurvonen and Hallikainen (1996) investigated  signatures acquired in the Bay of Bothnia 
in February and March 1992 with a helicopter-borne radiometer system operating at 
frequencies 24, 34, 48 and 94 GHz, V-polarization only. The incidence angle was 45º. The  
data were assigned to the following surface types: open water, new ice, close pack ice 
(crushed ice and slush, not solid) and compact pack ice. The dataset included three different 
snow cover conditions: dry snow, wet snow and refrozen snow. For the dry snow condition  
24 GHz data were not available. 
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BT
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Under dry snow and refrozen snow conditions the mean  for compact pack ice decreased 
with increasing frequency (around 20 K from 34 to 94 GHz). This was very likely due to high 
volume scattering in the snow cover at 94 GHz. For snow-free close pack ice the mean , on 
the contrary, increased with increasing frequency (around 10 K). This was also the case for 
new ice under dry snow condition (increase 15 K), but under refrozen snow condition new ice 
was covered by a frost layer, and the mean  now decreased from 24 to 94 GHz (around    
10 K). Under wet snow condition only close and compact pack ice were measured and their 
mean  values increased slightly (<10 K) from 24 to 94 GHz. The mean  values for the 
two ice types were very close to each other and close to their physical temperatures which 
was around 0ºC. The mean  for open water always increased considerably (even 80 K) 
with increasing frequency. For compact pack ice the standard deviation of  was clearly 
larger at 94 GHz than at lower frequencies due to the large variation of snow depth on 
compact pack ice. 
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For classification of the surface types a combination of high-frequency (94 GHz) and low-
frequency (24 or 34 GHz) channel provided the best results. The higher frequency is sensitive 
to dry and refrozen snow, so it is useful for the detection of pack ice and fast ice, which are 
usually covered by snow. The problem with the high frequency channel is that the  of pack 
ice and fast ice may be equal to that of open water, if there is the right amount of dry or 
refrozen snow on the ice. Hence, a lower frequency channel is needed to detect open water in 
all weather conditions. It is also useful for detection of new ice if it is covered by snow or 
frost. Discrimination of ice types is, however, quite poor when the snow cover is wet. 

BT

4.9 Sea Ice Classification by Spaceborne Radiometer and 
Scatterometer Images 

Ice concentration mapping in the Baltic Sea using spaceborne radiometer was first studied by 
Hallikainen and Mikkonen (1986) with Nimbus 7 Scanning Multichannel Microwave 
Radiometer (SMMR) data (SMMR operated in 1978-1987). Ice concentration mapping using 
the Special Sensor Microwave Imager (SSM/I) data (available since 1987) with the NASA 
Team algorithm (Cavalieri et al. 1984, 1991) has been studied by Grandell and Hallikainen 
(1994) and Grandell et al. (1996). The latter also derived the Baltic Sea ice concentration from 
ERS-1 Wind Scatterometer data and compared the results with the SSM/I concentration maps. 
Baltic Sea ice studies with the NASA Advanced Microwave Scanning Radiometer (AMSR-E) 
data (available since 2002) have not yet been published. Before reviewing the results, the 
NASA Team algorithm is briefly described. 

The NASA Team algorithm was originally developed for the Nimbus-7 SMMR data 
(Cavalieri et al. 1984) and has subsequently been modified for the SSM/I data as well 
(Cavalieri et al. 1991). The algorithm is based on the assumption that a data pixel consists of a 
mixture of open water and two ice types. In the Arctic Oceans, the two ice types have been 
identified with help of additional information from field and airborne observations to be first-
year (FY) and multiyear sea ice (MY) (Comiso et al. 1997). The algorithm uses data from 
three SSM/I channels; 19H, 19V and 37V, processed into 25 by 25 km grid cells, and it is 
based on two independent variables; polarization ratio  and gradient ratio GR . These 
variables are defined as (Cavalieri et al. 1984): 
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PR  generally distinguishes between open water and ice, with open water having higher  
values.  generally distinguishes between the two ice types, with higher GR  values 
corresponding to FY. The advantage of using ratios instead of brightness temperature 
differences is that they are largely independent of ice temperature differences (Cavalieri et al. 
1984). The V-polarized  is particularly used because at 37 GHz layering in the dry snow 
cover strongly influences the horizontally polarized brightness temperatures, but leaves the 
vertical polarization largely unchanged due to the Brewster angle effect (Mätzler et al. 1984). 

PR
GR
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From  and GR  the FY and MY concentrations (  and ) are calculated with the 
following equations (Cavalieri et al. 1991): 

PR FYC MYC

( ) DGRPRaGRaPRaaCFY ⋅+++= 3210 , (4.31)

( ) DGRPRbGRbPRbbCMY ⋅+++= 3210 , (4.32)

where: 

GRPRcGRcPRccD ⋅+++= 3210 . (4.33)

The total sea ice concentration is the sum of the first-year and multiyear ice concentrations: 

MYFYT CCC += . (4.34)

The coefficients ,  and  are functions of a set of nine brightness temperatures. These 
brightness temperatures, referred to as algorithm tie points, are observed SSM/I brightness 
temperatures over areas of known ice-free ocean, FY, and MY for each of the three SSM/I 
channels. The tie points can be either global (Arctic or Antarctic ) or regional (e.g. Baltic 
Sea). 
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The algorithm includes a simple weather filter in order to eliminate spurious ice 
concentrations due to weather related effects at polar latitudes (Cavalieri et al. 1991). The 
filter sets the ice concentration to zero for all pixels with  (currently, there are also 
other weather filters). This threshold also eliminates ice concentrations below 15%. 

05.0≥GR

Grandell and Hallikainen (1994) studied the determination of the Baltic Sea ice concentration 
using the SSM/I data acquired over the Sea of Bothnia and Bay of Bothnia from beginning of 
November 1990 to the end of May 1991. The NASA team algorithm tie points for open water 
and FY were adjusted for the Baltic Sea. The MY tie point was kept as it is for the Arctic 
Oceans which meant that the algorithm was used for mapping only the total ice concentration. 
The tie points for the Baltic Sea and Artic Oceans are presented in Table 4.1. The open water 
tie points are larger for the Baltic Sea than for the Arctic Oceans, especially at 19.35 GHz H-
polarization. No explanations for this difference were given. The SSM/I-derived ice 
concentrations were compared to the FIS ice charts and the correlation was over 0.80 for the 
best test areas. However, the time period for the correlation study was quite short and the 
correlations were mostly based on either 0% or 90 to 100% ice concentration values. The 
effect of the tie points selection was also studied and it was observed that the Arctic tie points 
gave concentration values 10 to 20% too small with respect to the ground truth and, thus, the 
selection of the Baltic Sea tie points should be performed with care. 

Grandell et al. (1996) compared Baltic Sea ice coverages derived from the SSM/I and ERS-1 
C-band Wind Scatterometer data to each other. The data sets were acquired over the whole 
Northern Baltic Sea during the winters of 1992-1996. The SSM/I sea ice concentrations were 
derived using the specific Baltic Sea tie points of Grandell and Hallikainen (1994). The ERS-
1 Wind Scatterometer has three antennas looking 45º forward (fore beam), across track (mid 
beam), and 45º backwards (aft beam) with respect to the satellite track. The data are processed 
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Table 4.1 Tie points of the NASA Team algorithm for the Arctic Oceans (Cavalieri et al. 
1991) and the Baltic Sea (Grandell and Hallikainen 1994). 

SSM/I channel Open water First-year ice Multiyear ice 
 Arctic Baltic Sea Arctic Baltic Sea Arctic and Baltic Sea

19.35 H 100.8 K 114.4 K 242.8 K 225.0 K 203.9 K 

19.35 V 177.1 K 184.2 K 258.2 K 251.8 K 223.2 K 

37.0 V 201.7 K 207.6 K 252.8 K 241.7 K 186.3 K 
 

into a 25 km grid. Each pixel is imaged with three different azimuthal viewing directions and 
with two incidence angles (one for mid-beam and another for both fore and aft beams). An 
algorithm for sea ice detection was developed based on the anisotrophy index (Wismann et al. 
1996): 
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where linear values of °σ  are used for calculating ( )θφ  and values in dB for . ( )θSL ( )θφ  is a 
basic discriminant for determining whether the pixel in question is open water (high ( )θφ ) or 
ice. However, open water may in some cases have low ( )θφ  values (e.g. calm ocean). ( )θSL  
describing incidence angle behavior of °σ  helps to discriminate open water from sea ice. For 
sea ice, the incidence angle dependence of °σ  is a linear function, but for open water °σ  
decreases rapidly at small incidence angles, before reaching a linear response. The thresholds 
for  and  for discriminating open water and sea ice are: open water  and 

; sea ice 
( )θφ ( )θSL ( ) 16.0>θφ

( ) 45.0>θSL ( ) 16.0≤θφ  and ( ) 45.0≤θSL . The scatterometer algorithm yields only a 
open water – sea ice classification image, i.e. pixels have either 0% or 100% ice 
concentration. 

The results with the SSM/I data indicated that a coastline effect, which occurs when part of 
the mainlobe and/or sidelobe footprint of the radiometer antenna is over land in addition to 
open water or sea ice, contaminates the ice concentration estimates up to 50 km (two pixels) 
from the coastline. The sea ice area extent has to rise above a “noise” level in order to be 
distinguishable from the coastline effect. The magnitude of the “noise” level depends strongly 
on the selection of the concentration value used for determining the ice edge contour. Only in 
1994 and 1996 winter was severe enough for the sea ice extent to rise above this “noise” 
level. For the Wind Scatterometer data, the coastline effect was smaller, the contamination 
limit was closer to one pixel (25 km). The weather filter of the NASA team algorithm worked 
well in the open water areas of the Baltic Sea, while mixed and ice pixels were left 
uncorrected. The scatterometer algorithm, however, did not appear to need any weather 
corrections. Therefore, mixed pixel estimates, i.e. definition of the ice edge, could be 
enhanced by combined use of the Wind Scatterometer and SSM/I data. The temporal 
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estimates of the total ice coverage with the Wind Scatterometer data corresponded to roughly 
those with the SSM/I data. 

In general, these two studies indicated that the SSM/I data provide an estimation of the Baltic 
Sea ice coverage, but the coastline contamination effect and low spatial resolution limits its 
usability due to the small size of the Baltic Sea (this also applies for the AMSR-E data). 

4.10   Summary 
In the following, the main results of the previous studies relevant for this thesis are 
summarized. 

Geometric properties of the Baltic Sea ice and theoretical °σ  modeling 
• Baltic Sea ice has a fractal-like multiscale surface roughness, i.e. surface rms roughness  

and correlation length  depends on the measurement length. Snow cover on deformed ice 
decreases  as snow fills deep pits of deformed ice. In contrast, snow cover on level ice 
typically increases  due to wind redistribution of snow and snow melt-refreeze cycles. 
(Manninen 1997a). 
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• At C-band co-polarization (RADARSAT-1, ENVISAT) ice surface scattering is typically 
dominating when 0θ  is less than 45º and snow cover is dry. If ice surface is very smooth 
and salinity <0.5‰, which is typically the case for level fast ice, the scattering from ice-
water interface and ice volume are significant. (Carlström and Ulander 1995, Dierking et 
al. 1999). 

S

• At X-band co-polarization volume scattering from the upper ice layer dominates under dry 
snow condition. The ice-ocean interface is the main scattering source at L-band. (Dierking 
et al. 1999). 

• The main scattering component of ice ridge °σ  at C-band co-polarization is the coherent 
scattering (specular reflection) from ice block major facets according to (Carlström and 
Ulander 1995, Carlström 1997), whereas according to (Manninen 1992, 1996b) it is the 
incoherent surface scattering from ice blocks. This difference is due to the different ice 
ridge surface structure models used. 

• The ice ridge  depends on the most on the ice block surface roughness, secondly on the 
block  and the least on the ridge geometrical parameters. The theoretical  contrast 
between level ice and ice ridge is the largest at cross-polarization. 

°σ

rε °σ
°σ  is larger when radar 

is viewing across the ice ridge than it is viewing along it. (Manninen 1992). 
Backscattering signatures at C- and X-band 
• The mean  at all C- and X-band polarizations increases with increasing ice deformation 

and decreases with increasing  (Kemppainen 1989, Hyyppä and Hallikainen 1992, 
Hallikainen and Toikka 1992, Dammert et al. 1994). 
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• The  contrast between open water and level ice is around 3 dB higher at C-band VV- 
than at VH-polarization (Carlström 1990), whereas that between deformed ice and level ice 
is at VH-polarization even 10 dB higher (Carlström 1990, Hyyppä and Hallikainen 1992). 

σ°

•  at C-band HH-polarization is on the average the largest for ridged ice and the smallest 
for jammed brash barrier.  decreases when snow wetness increases. For deformed ice 
types the mean C-band  is generally higher at VH- than at VV-polarization. (Carlström 
1990, Dammert et al. 1994). 

sT

sT

sT

•  at C-band HH-polarization is typically larger than that at VV-polarization (obtained 
with data for brash ice).  at HH-polarization is the most sensitive to surface roughness 
inhomogeneities at the mid-to-large incidence angle range. (Dierking et al. 1997). 

sT

sT
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• Ice type discrimination results with a single channel σ°  are usually poor. Cross-polarized 

 provides better results than co-polarized σ° σ°  and their combination gives the best 
results. The ice type discrimination usually improves with the increasing . X-band 
provides slightly better discrimination results than C-band. (Carlström 1990, Hyyppä and 
Hallikainen 1992, Hallikainen and Toikka 1992). 

0θ

• Combined use σ°  and  increases ice type discrimination, especially under dry snow 
condition. Open water leads are not discriminated from sea ice with 

sT

σ°  and . (Dammert 
et al. 1994). 

sT

•  decreases with increasing air temperature under cold conditions. Very rough ice is 
slightly more sensitive than smooth ice to a air temperature change. From cold to warm 
condition  for all ice types decreases. The decrease is larger for rough ice than for 
smooth ice as wet snow cover makes rough ice areas look much smoother. (Lundin 2001). 

°σ

°σ

Polarimetric discriminants at L- and C-band 
• L- and C-band co- and depolarization ratios ( oo

HHVVcoR σσ=  in here) do not separate 
different level ice types. L-band  is close to one, whereas C-band  is over one and 
increases with increasing . At both bands  is around 0.1. Level ice  at      
C-band varies from -10º to +10º and at L-band from 0º to 30º. 

coR coR

0θ depolR VVHH−φ

VVHH−φ  increases slightly 
with increasing  at both bands. The observed 0θ VVHH−φ  at C-band can be explained with 
dominating ice surface scattering and at L-band by an anisotropic character of the ice layer 
close to the ice-water interface. (Dierking and Askne 1998). 

• L- and C-band  and  do not discriminate deformed ice types. At L-band  is 
from 0.8 and 1.0 and at C-band from 0.7 to 1.1.  values smaller than one may indicate 
the dominance of double bounce or coherent scattering from ice blocks. According to 
larger  at L- than at C-band multiple scattering processes within deformed ice are 
stronger at L-band. At L-band  for deformed ice is scattered around zero and at C-
band it is from -10º to +5º. (Dierking and Askne 1998). 

coR depolR coR

coR

depolR

VVHH−φ

Brightness temperature signatures 
• Under dry snow and refrozen snow conditions the mean  for snow covered ice types 

decreases with increasing frequency due to increase of snow volume scattering. Standard 
deviation of  increases with increasing frequency if there are large variations in snow 
thickness. Under wet snow condition mean  values for snow covered ice types are close 
to each other. (Kurvonen and Hallikainen 1996). 

BT

BT

BT

• For classification of the surface types a combination of high-frequency (94 GHz) and low-
frequency (24 GHz) channels provides the best results. The high frequency channel is 
sensitive to dry and refrozen snow, so it detects snow covered ice types. The low frequency 
channel detects open water in all weather conditions. Discrimination of ice types is rather 
poor when the snow cover is wet. (Kurvonen and Hallikainen 1996). 

Determination of the Baltic Sea ice coverage with spaceborne radiometer data 
• The SSM/I data provides an estimation of the Baltic Sea ice coverage, but the coastline 

contamination effect and low spatial resolution limits its usability. The sea ice area extent 
has to rise above a “noise” level in order to be distinguishable from the coastline effect. 
Algorithms for the Arctic Sea must be modified for the Baltic Sea ice conditions. (Grandell 
and Hallikainen 1994, Grandell et al. 1996). 
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5 Investigation of Backscattering Signatures of the Baltic 
Sea Ice 

For supporting development of operational classification algorithms for SAR images, the 
following investigations on active microwave remote sensing of the Baltic Sea ice were 
conducted: (1) statistics of C- and X-band backscattering signatures [P1], (2) statistics of L- 
and C-band polarimetric discriminants [P2], (3) incidence angle dependence of °σ  in 
RADARSAT-1 SAR images [P3], (4) dependence between standard deviation and 
measurement length for  signatures and its usability in sea ice classification [P4], and  
(5) dependences between SAR  time series and results of a thermodynamic snow/ice 
model [P5]. Below, radars and data sets used in [P1]-[P5] and general sea ice and snow cover 
classes used are first presented, followed by discussions of the research methods and main 
results with comparisons to previous studies, when appropriate. 

°σ
°σ

5.1 Radar Instruments and Data Sets 

5.1.1 HUTSCAT scatterometer 
The HUTSCAT (Helsinki University of Technology Scatterometer) is a helicopter-borne non-
imaging frequency modulated - carrier wave (FW-CW) scatterometer operating 
simultaneously at frequencies 5.4 GHz (C-band) and 9.8 GHz (X-band) and all four linear 
polarizations (Hallikainen et al. 1993). HUTSCAT was designed and constructed during 
1987-1990 by Laboratory of Space Technology of TKK. The main parameters of HUTSCAT 
are presented in Table 5.1. HUTSCAT measures the backscattered power as a function of 
measurement range at a resolution of 0.68 m. At each channel 20 backscattered power spectra 
per second are measured. Simultaneously with the backscattering measurements, the target is 
recorded by a video camera, and DGPS-coordinates (differential GPS) of the flight track are 
saved. A typical flight altitude is 100 m and the flight speed is 25 m/s. Internal and external 
calibration are used to eliminate short-term and long-term variations in the backscattered 
power level. Internal calibration is conducted by a delay line which connects transmitted 
power to the receiver. External (absolute) calibration is achieved with active radar calibrators 
and corner reflectors. The backscattered power spectra data are converted to absolute °σ  
values using internal, external and range calibration coefficients. 

HUTSCAT measurements over the Baltic Sea ice were conducted in 1992-2003 during seven 
ice research campaigns, see Table 5.2. The two research campaigns in 1992 were part of the 
international PIPOR (A Programme for International Polar Oceans Research) ERS-1 project. 
The campaigns in 1993 and 1994 were part of the Finnish OSIC (Operational Sea Ice 
Charting using ERS-1 SAR images) ERS-1 pilot project. The campaigns in 1995 and 1997 
were carried out within the framework of the ESA EMAC (European Multisensor Airborne 
Campaign) and EU IMSI (Integrated Use of New Microwave Satellite Data for Improved Sea 
Ice Observation) projects, respectively. The campaign of 2003 was part of the national ESSI 
(ENVISAT and the Baltic Sea Ice Conditions) project. R/V Aranda operated by FIMR was 
the base for the HUTSCAT and ground data measurements in 1992-1997. In 2003, the base 
was Marjaniemi pilot station in Hailuoto Island in the Bay of Bothnia. 

HUTSCAT measurements were conducted along selected test lines that included various ice 
types. A typical length of each test line was tens of kilometers. The measurements were 
conducted at incidence angles of 23 and 45 degrees. Both angles are within the incidence 
angle range of RADARSAT-1 ScanSAR (20º to 50º). The 23-degree angle is within the 
incidence angle range of both ERS-2 SAR (19.5º to 26.5º) and ENVISAT ASAR Wide Swath 
Mode (WSM) images (16º to 43º), and the 45-degree angle is only two degrees larger than the 
maximum incidence angle of ENVISAT WSM. The ground truth measurements included ice 
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Table 5.1 The main parameters of the HUTSCAT scatterometer (Hallikainen et al. 1993, 
Hyyppä et al. 1999). 

Parameter Value 
Center frequency 5.4 and 9.8 GHz 
Modulation FM-CW 
Sweep bandwidth 230 MHz 
Polarization HH, HV, VV, VH 
Measurement range 20 to 160 m 
Range resolution 0.68 m 
Incidence angle 0° to 45° of nadir 
Antenna effective two-way 
3 dB beamwidth 

4.7° (large), 6.7° (small) (5.4 GHz) 1)

4.4° (9.8 GHz) 

Antenna polarization isolation 26.0 dB (large), 22.5 dB (small) (5.4 GHz) 1)

28.5 dB (9.8 GHz) 
Relative  σ°
90% confidence interval ±0.3 dB (5.4 and 9.8 GHz) 

Absolute σ°  
90% confidence interval 

±1.0 dB (5.4 GHz HH, VH) 
±0.6 dB (5.4 GHz VV) 
±0.7 dB (9.8 GHz) 

Noise equivalent  σ°

< -25.0 dB (5.4 GHz HH) 
< -28.5 dB (5.4 GHz VV) 
< -46.5 dB (5.4 GHz VH) 
< -21.0 dB (9.8 GHz HH) 
< -24.5 dB (9.8 GHz VV) 
< -48.0 dB (9.8 GHz VH) 

1) Small 5.4 GHz antenna (diameter 40 cm) was used in 1992 and large antenna 
(diameter 75 cm) from 1993 onward. 

and snow characteristics (e.g. snow depth, snow density and wetness profiles) and they were 
conducted mainly near R/V Aranda (1992-1997) or Marjaniemi pilot station (2003). Weather 
data were provided by the R/V Aranda weather station (1992-1997) or Finnish Meteorological 
Institute (FMI) Marjaniemi weather station (2003). 

Here  (the first letter denotes the incident polarization and the second the scattered 
polarization) was chosen to represent cross-polarized 

σ°VH

σ°  because at the VH channel the noise 
floor is 3 dB lower than at the HV channel. 

HUTSCAT data were assigned into various surface type classes described in Chapter 5.2 by 
video imagery. Only the sections of the measurement lines fulfilling the following 
requirements were accepted for further data analysis: (1) identification of ice type was 
reliable, and (2) section length as measured by the video imagery was more than 10 s, which 
corresponds to a distance of 250 m. The decision of the surface type is more reliable, when 
the imagery is ‘averaged’ over reasonable lengths. Accuracy of the video classification was 
estimated by comparing two classification results for a single measurement line (length  
60 km). The classifications were conducted one year apart by the author. Eighty per cent of 
the two classifications matched each other. The total amount of HUTSCAT data corresponds 
roughly to a distance of 1000 km. Seventy-seven per cent of the data were assigned into 
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various surface types. The ground truth data provided further classification of HUTSCAT 
data into dry, moist and wet snow cover wetness classes, see Chapter 5.2. 

Table 5.2 HUTSCAT scatterometer datasets for the Baltic Sea ice. 

Campaign 
and date 

Position of 
R/V Aranda 

Inc. 
angles 
[deg] 

Air 
temp.
[°C] 

No. of
ice 

types 
Snow coverage and thickness Snow 

class 

PIPOR-92A 
10 Feb 

Bay of Bothnia 
65° 31’ N, 24° 21’ E 23, 45 +0.4 4 

Snow coverage on level ice 20-50%. 
Shallow snow accumulations behind 
ridges and blocks. 

Wet snow/ 
Wet ice 

PIPOR-92A 
11 Feb 

Bay of Bothnia 
65° 31’ N, 24° 21’ E 23 -1.0 3 Mean thickness less than 10 cm.  Wet snow 

PIPOR-92A 
14 Feb 

Bay of Bothnia 
65° 18’ N, 23° 47’ E 23 -12.0 7 Mean thickness less than 10 cm.  Moist 

snow 
PIPOR-92B 

12 Mar 
Bay of Bothnia 

65° 24’ N, 23° 35’ E 23, 45 -1.4 3 Ice was only partly covered with snow.  Moist 
snow 

PIPOR-92B 
15 Mar 

Bay of Bothnia 
65° 25’ N, 23° 35’ E 23 -3.4 7 

Ice was covered by a roughly 10 cm even 
snow layer. Large areas of ice were 
flooded. Areas with thicker ice were 
unflooded. 

Moist 
snow 

PIPOR-92B 
18 Mar 

Bay of Bothnia 
65° 25’ N, 23° 35’ E 23 +0.1 5 

Ice was covered by a roughly 10 cm even 
snow layer. Wind had mixed up new and 
old snow. 

Wet snow 

PIPOR-92B 
20 Mar 

Bay of Bothnia 
65° 25’ N, 23° 35’ E 23 -1.1 6 

Snow had melted from less rough ice 
areas. Snow remained in more deformed 
areas. 

Wet snow/
Wet ice 

PIPOR-92B 
21 Mar 

Bay of Bothnia 
65° 25’ N, 23° 36’ E 23, 45 -6.5 4 Ice was mostly snow-free and snow 

surface was hard with crust. 
Dry snow/

Dry ice 
OSIC-93 
23 Feb 
25 Feb 
28 Feb 

Bay of Bothnia 
65° 15’ N, 24° 14’ E 

 
23 
45 
23 

 
-13.3
-5.3
-5.2 

 
3 
2 
2 

Deformed ice covered with few cm thick 
old snow layer and with drift snow layer 
(0-20 cm). Level ice covered with salty 
hoarfrost. 

Dry 
snow 

OSIC-94 
23 Mar 

Sea of Bothnia 
62° 18’ N, 20° 27’ E 23, 45 -0.2 4 Level ice almost snowfree. Shallow snow 

accumulations behind ridges and blocks. 
Wet snow/

Wet ice 

OSIC-94 
26 Mar 

Gulf of Finland 
59° 56’ N, 25° 24’ E 23, 45 -4.6 6 

Partly frozen 2-3 cm thick slush layer on 
level ice. Up to 50 cm thick snow 
accumulations in ridges. 

Moist 
snow 

EMAC-95 
4 Apr 
6 Apr 

Bay of Bothnia 
65° 12’ N, 24° 14’ E 23, 45 

 
-6.7
-0.4 

 
4 
7 

Mean snow thickness 10-40 cm. 
Occasionally a thin slush layer 
underneath the snow cover. 

Moist 
snow 

IMSI-97 
21 Mar 
23 Mar 

Bay of Bothnia 
65° 16’ N, 23° 58’ E 
64° 13’ N, 22° 24’ E 

23, 45 
 

-10.6
-7.1 

 
5 
5 

Level ice covered by a very thin loose 
new snow layer. Some snow in ridges 
and on rough ice areas. 

Dry snow/
Dry ice 

ESSI-03 
13 Feb 
14 Feb 
18 Feb 

Near Marjaniemi 
pilot station 23, 45 

 
-4.3

-10.0
+2.1 

 
1 
2 
3 

Average snow thickness on level fast ice 
26 cm. 

 
Dry snow
Dry snow

Moist snow
 

The HUTSCAT data were averaged to a resolution of either 12.5 m [P4] or 25 m [P1], [P3]. 
At a typical flight speed of 25 m/s this corresponds to averaging 10 or 20 consecutive σ°  
values together. These resolutions were chosen to match coarser resolution spaceborne SAR 
data and at the same time to keep the sample sizes of some ice types large enough for a 
reliable estimation of the statistical parameters. Averaged data have around 50 (12.5 m) or 
100 (25 m) independent samples in each σ° . The standard deviation of fading is then below 
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0.62 or 0.43 dB. For SDI, HDI and FBI a large amount of data exist under all snow conditions 
(see Chapter 5.2 for ice type definitions). For NI and RLI data exist under dry and moist snow 
condition only. Under moist and wet snow condition there is small amount of data for LBI. 
Only in two field campaigns the number of samples for open water leads is large enough. 

For the estimation of  with (3.3), averages of the instrument noise equivalent 
backscattering coefficient ( ) and 

sT
o
Nσ N  are needed. For HUTSCAT  depends considerably 

on the measurement range which means that its accurate estimation is usually very difficult. 
Therefore,  is in [P1] estimated just by the normalized standard deviation (standard 
deviation divided by mean) which is further converted to dB values using (3.6). When 

σN
o

Ts
N  is 

100 in each , the difference between  and normalized standard deviation is smaller than 
0.1, if  is larger than 10 dB. 

°σ Ts
SNR

5.1.2 RADARSAT-1 
RADARSAT-1 SAR operates at 5.3 GHz (C-band) with HH-polarization. It has several 
operation modes with different image sizes and resolutions. In [P3], RADARSAT-1 ScanSAR 
Narrow images acquired over the Bay of Bothnia in 1998-2000 are used. The ScanSAR 
Narrow mode operates with a combination of two (ScanSAR Narrow A; SNA) or three 
antenna beams (SNB). The main difference between the two image types is their incidence 
angle range, 19 to 39 degrees for SNA and 30 to 46 degrees for SNB (RSI 2000). The 
ScanSAR Narrow images were received and processed by the KSAT in Tromsø, Norway. The 
images delivered by KSAT were in ground range projection with a 50-m pixel spacing. At 
FIS the images were rectified to the Universal Transverse Mercator (UTM) projection with a    
100 m pixel spacing using an algorithm described in (Herland and Berglund 1995). The land 
areas in the images were masked off. The backscatter intensity in the images is coded with an 
8-bit logarithmic scale. Backscattering coefficients are derived using: 

( )0

2

sin θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=°σ

G
BP

, (5.1)

where P  is the 8-bit pixel value (0-255), B  is the logarithmic scale (1.024),  is the 
logarithmic gain factor (0.16). 

G

KSAT did not provide absolute calibration of the ScanSAR Narrow images. The nominal 
radiometric uncertainty within any image or between any two images is at maximum 3 dB 
according to the header files accompanying the image data. Ground to slant range distance 
conversion coefficients needed to calculate 0θ  for every pixel using a method described in 
(Shepherd 1998) were neither provided. Thus, 0θ  was calculated with the following method: 
first, the incidence angles are calculated for the nearest and most distant range pixels using 
image geometry and satellite orbit parameters obtained from the image header files and, 
second, the incidence angles for other pixels are interpolated in the UTM projection with one 
degree accuracy. 

For studying the  dependence of the statistical properties of 0θ °σ  in [P3] a special selection 
method of the ScanSAR Narrow images was needed. First, image pairs over the Bay of 
Bothnia were selected from a large number of images acquired during February-April in 
1998-2000 using air temperature data from three Finnish coastal weather stations; 
Valassaaret, Ulkokalla and Hailuoto, see Figure 5.1. The air temperature was required to be 
either below or above 0°C at least one day before the acquisition of the first image and also 
between the times of the acquisition of both images. Secondly, the image pairs were classified 
either to dry snow or wet snow condition. The two images of an image pair provide  data at 
two different incidence angles for exactly the same areas for statistical analyses. The SAR 

°σ
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images of the pairs were typically acquired 1.5 days apart at different orbits, one at 
descending orbit around 05:00 UTC and the other at ascending orbit around 16:00 UTC. This 
orbit combination provided a large range of the 0θ  difference values between the two images. 
The total number of image pairs is 28, with 21 for dry snow and 7 for wet snow condition. 
Nine pairs were acquired in 1998 and 7 and 12 in 1999 and 2000, respectively. 

Two consecutive SAR images were first matched using the land mask; then a linear 
regression model between the pixel coordinates of the two images was determined using 
bright spots (e.g., stationary ships, heavily deformed ice areas) in the images. The accuracy of 
this matching procedure is estimated to be one to two pixels. 

 
(a)       (b) 

Figure 5.1 A RADARSAT ScanSAR Narrow image pair over the Bay of Bothnia. (a) SNB 
type acquired on March 17, 2000 (04:50 UTC) at descending orbit. (b) SNA type acquired on 
March 18, 2000 (15:51 UTC) at ascending orbit. The arrow in the image indicates the SAR 
look direction. The three FMI coastal weather stations used in [P3] are shown in (b). The 
incidence angle values in the images are shown with one degree boundaries. 

5.1.3 ENVISAT ASAR 
ENVISAT ASAR operating at 5.331 GHz has several single and dual polarization operating 
modes. In [P4] and [P5], image mode precision (IMP), alternating polarization precision 
(APP) and Wide Swath Mode (WSM) images are used. The APP and IMP modes have seven 
different swath types, denoted as IS1 to IS7, with different incidence angle ranges. All images 
used here were delivered in ground range projection. Some characteristics of the image types 
are described in Table 5.3. 

SAR images were processed to  values using the ESA’s BEST-software and then rectified 
to the Finnish Uniform Coordinate System (northing and easting in meters) with either 25 m 
[P4] or 30 m [P5] pixel size for the APP and IMP images and with 150 m pixel size for the 
WSM images. The correlation between neighboring pixels of the rectified images is 
negligible. 

°σ

In [P4], two IMP images at HH-polarization and two APP images at HH/HV-polarization 
acquired over the northern part of the Bay of Bothnia in February 2003 are used, see Table 
5.10. The images were classified into dry snow and moist snow conditions using field 
campaign data. 
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Table 5.3 Some characteristics of the ENVISAT ASAR APP, IMP, and WSM images (Closa 
et al. 2003, Meadows and Wright 2003a, 2003b; Rosich et al. 2004). 

 APP IMP WSM 

Pixel size 12.5 by 12.5 m 12.5 by 12.5 m 75 by 75 m 

Azimuth resolution 27.65±0.86 m  22.07±0.43 m 108.13±3.5 m 

Range resolution range dependent 
on average 26 m 

range dependent 
on average 25 m 

range dependent 
on average 120 m 

Equivalent number 
of looks 2 3.61 around 16 

Absolute accuracy ±0.49 dB ±0.41 dB ±0.63 dB 

Noise equivalent  °σ -28 to -22 dB -26 to -21.5 dB -25 to -22 dB 
 

For comparisons of  time series with results of a thermodynamic snow/ice model in [P5], 
21 IMP images (February 3 to March 16, 2004) and eight WSM images (March 8 to April 7, 
2004) were acquired over the Bay of Bothnia, see Table 5.4. All images have HH-
polarization. The local acquisition time was either between 10:40-12:15 (descending orbit) or 
21:25-22:53 (ascending orbit). The time interval between acquisition of two SAR images 
varied from one to eight days. 

°σ

Table 5.4 ENVISAT ASAR data set for [P5]. Time period is from February 3 to April 7, 
2004. The number for the ENVISAT data indicates the swath type (IS1-IS7) of an IMP 
image. ‘W’ means a WSM-image. 

Date 2.3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
ENVISAT 7 2  7  1  4       1 3  

Date 20 21 22 23 24 25 26 27 28 29 3.1 2 3 4 5 6 7 
ENVISAT 1 2 7  1 6 3  5 4  4   3 6  

Date 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
ENVISAT W      1 6 4  W W     W 

Date 25 26 27 28 29 30 31 4.1 2 3 4 5 6 7    
ENVISAT   W   W       W W    

5.1.4 EMISAR 
EMISAR is a fully polarimetric L-band (1.25 GHz) and C-band (5.3 GHz) SAR operated by 
Technical University of Denmark (Christensen et al. 1998). In 1995 EMISAR was flown on 
the Gulfstream G3 aircraft of the Royal Danish Air Force. EMISAR has a resolution of 2 by  
2 m and an image size of 9.6 (range) by 13 (azimuth) km in slant range. The incidence angle 
varies in the images from 40º to 60º, being around 54º at the image centers. EMISAR 
deliverables are the full resolution single look scattering matrix data in the slant range 
projection with 1.5 by 1.5 m pixel size and the multilooked covariance matrix data in the 
pseudo ground range projection with 5 by 5 m pixel size. 

In the EMAC-95 campaign, EMISAR acquired data on March 22 and 23, and May 2 and 3 
over four 9 by 9 km test sites in the Bay of Bothnia (Dall et. al 1997). In 1995, EMISAR 
operated only at one frequency band at a time and changes between C-band and L-band 
required a landing of aircraft to reconfigure the SAR for the other frequency. In [P2], L- and 
C-band scattering matrix images acquired in March over one test site are studied. The ice 
situation on this test site was typical for normal winter. 
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5.2 Sea Ice and Snow Cover Wetness Classes 
HUTSCAT data were assigned by video imagery into surface type classes presented in Table 
5.5. The ice type classes are based on the ice type classification described in Section 2.2 
(classification ways “surface structure” and “stage of ice development and ice thickness”) and 
on the classification used operationally for the FIS ice charts (see Figure 2.2). Here a surface 
type ‘open water leads’ (OW) is used instead of ‘open water’ because all measured open 
water areas were leads typically few kilometers across. The ice type classes are as follows: 
Nilas (NI) is a general term for recently formed ice which is usually less than 10 cm thick. It 
is same as the class ‘new ice’ in the FIS ice chart. Nilas is not divided into sub-groups, 
because their identification in video imagery is very difficult and also because it does not pose 
any problems for ship navigation. Smooth level ice (SLI) is almost unaffected by 
deformation, only cracking or finger rafting may occur. Rough level ice (RLI) has protruding 
ice blocks and floe edges and low uneven surface areas and it has typically broken and frozen 
several times. SLI and RLI belong to classes ‘level ice’ and ‘fast ice’ of the FIS ice chart. 
Slightly deformed ice (SDI) consists of ice ridges, uneven surfaces and level ice areas, the 
sizes of which are usually larger than 100 m pixel in SAR images. The average size of level 
ice areas in highly deformed ice (HDI) is usually smaller than the pixel size, and the 
proportion of level ice areas is smaller than in SDI, i.e. the degree of deformation is higher. 
Discrimination of SDI from HDI in video imagery is often difficult and subjective. Both SDI 
and HDI represent the class ‘ridged or hummocked ice” of the FIS ice chart. In addition, SDI 
also represents the classes “rafted ice’ and ‘consolidated compact ice’. Loose and frozen brash 
ice (LBI, FBI) are accumulations of ice fragments not more than 2 m across. Their surface is 
usually very rough in scales of below few tens of centimeters. The FIS ice chart class 
‘windrow’ belongs to the LBI class. 

From the EMISAR images windows representing NI, level ice (LI), SDI and HDI ice types 
were visually selected [P2]. LI is a combination of the HUTSCAT SLI and RLI classes. 

For ENVISAT data in [P4], following three ice types classes are used: LI, deformed ice (DI) 
and highly deformed ice (HDI). The classes were visually assigned for different test areas. 
The LI class corresponds to SLI in the HUTSCAT data. DI is a mixture of the HUTSCAT 
RLI and SDI classes whereas HDI is a mixture of SDI and HDI classes. Nilas was not present 
in the SAR images. 

Test sites on fast ice representing LI and DI were visually selected on the RADARSAT-1 
image pairs [P3]. It was not possible to identify visually different level ice and deformed ice 
sub-types and, thus, only these two broad ice type classes were used. 

Table 5.5 Baltic Sea ice type classes assigned for the HUTSCAT data. 

Main group sub Group Abbr. Effect on ship 
navigation 

Open water leads None OW None 

Nilas None NI None 

Level ice Smooth level ice 
Rough level ice 

SLI 
RLI 

Depends on 
thickness 

Deformed ice Slightly deformed ice 
 
Highly deformed ice 

SDI 
 

HDI 

Slows down or 
blocks navigation 

Usually blocks 
navigation 

Brash ice Loose brash ice 
Frozen brash ice 

LBI 
FBI 

Depends on 
thickness  
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As discussed earlier, snow cover wetness has a large effect on the statistics of the sea ice °σ . 
Therefore, all HUTSCAT data in [P1], [P3] and [P4], EMISAR data in [P2] and ENVISAT 
data in [P4] were further classified using ground truth data into the following snow cover 
wetness categories: (1) dry snow (volumetric wetness ≈ 0%), (2) moist snow (wetness < 1%) 
and (3) wet snow (wetness > 1%). According to (Hallikainen et al. 1986) the penetration 
depth of radar wave in snow decreases rapidly as a function of snow wetness for wetness 
values below 1%. The decrease is much slower as the wetness is above this value, see Figure 
5.2. For the RADARSAT-1 data in [P3], only dry snow and wet snow classes were used. For 
ENVISAT data in [P5], where a detailed study between °σ  and snow and sea ice properties 
was conducted, the wetness percentage limit between moist and wet snow classes was 
increased to 2%. This was based on the theoretical °σ  modeling of snow covered level ice 
using the first-order solution of the radiative transfer equation in (3.7) (Fung 1994). After this 
increase the ice surface scattering is smaller than the snow surface scattering under wet snow 
condition when snow cover is thin (thickness at minimum around 10 cm). It is believed that 
using this new wetness limit in the other journal articles, would not have caused significant 
changes in the results. 
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Figure 5.2 Penetration depth in snow as a function of snow wetness (Hallikainen et al. 1986). 
The frequency is 5.3 GHz and incidence angle is 0º. Snow density is 0.2 g/cm3. Scattering in 
snow is ignored. 

5.3 C- and X-band Backscattering Signatures 
Empirical statistics on backscattering signatures of various ice types are of general interest 
and they can also be utilized in the classification of the SAR images. For example, they could 
provide a simple limit for the level of °σ  above which ice is most likely deformed ice. 
Therefore, statistics of C- and X- band °σ  signatures for various ice types was investigated in 
[P1] using the HUTSCAT data acquired in 1992-1997 (Table 5.2) and averaged to a 
resolution of 25 m. Before statistical analyses, the HUTSCAT data were divided into large 
and small data sets. A large data set consists of all measurements conducted on a single day or 
during the same field campaign. The different large data sets of a same snow cover wetness 
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class were typically not combined because the mean σ°  for the same ice type typically varies 
substantially from one data set to another due to the different local ice and snow cover 
characteristics. Small data sets were formed by moving step by step an interval of nine σ°  
values over the HUTSCAT data. Here the different single measurement lines for a surface 
type were not combined because, if the mean levels of σ°  for separate lines are very different, 
their combination yields erroneous statistics. 

For the large data sets the following statistical parameters were calculated: means, 90% 
confidence intervals and probability density functions (pfd’s) for 5.4 and 9.8 GHz HH-, VV- 
and VH-polarized σ°  and co- and cross-polarization ratios (  and  in (3.18) and (3.19)). 
The pdf’s were also used to conduct maximum likelihood classification of the surface types. 
The means and stds were calculated only when the number of samples was at least ten. For 
the 90% confidence intervals and pdf’s at least 20 samples were required. The pdf’s were 
estimated with the Parzen method (Therrien 1987) using a Gaussian kernel function with a std 
of 1.0 dB which was large enough to filter out small random like fluctuations in the shape of 
the pdf, but still small enough to preserve large scale details. For the small data sets the mean 
and std (3.6) of σ°  were calculated. 

coR crR

5.3.1 Mean and 90% confidence interval of σ°  
Examples of the means and 90% confidence intervals of 5.4 and 9.8 GHz σ°  under dry and 
wet snow condition are presented in Figures 5.3 and 5.4. The results show that the mean °σ  
( ) usually increases when the degree of ice deformation increases. Theoretically o

Mσ °σ  
increases when the surface rms roughness , the size or the fraction of the volume scatterers 
increases (Fung 1994). According to (Manninen 1997a)  is usually larger for deformed ice 
than for level ice. Additionally, very likely various kinds of deformation features, like ice 
ridges, generate more volume and multiple scattering than NI and LI. Generally,  
decreases with increasing . The difference between the  values at the angles of 23 and 
45 degrees depends on ice type, snow condition and data set. The difference is usually larger 
at co- than at VH-polarization. The dependence between C-band HH-polarization  and 

s
s

o
Mσ

0θ
o
Mσ

o
Mσ 0θ  

is further studied in [P3]. No clear dependence between  and the snow wetness condition 
was observed. This is due to the different local ice and snow characteristics in different large 
data sets of the same snow condition, which give rise to large variations for  of the same 
ice type. 

o
Mσ

o
Mσ

The range of the  values (maximum minus minimum ) is on average of the same 
order under dry and moist snow condition and noticeably larger than under wet snow 
condition. When the snow cover is wet, it attenuates or even totally blocks backscatter from 
underlying sea ice, yielding small range of , as the surface of the snow cover is usually 
smoother than that of sea ice (Manninen 1997a). At HH- and VV-polarization the range of 

 is on average equal and mostly smaller than at VH-polarization. 

o
Mσ

o
Mσ

o
Mσ

o
Mσ

The 90% interval of observed σ°  values is on average the largest for NI and deformed ice 
types and the smallest for brash ice types. This can be explained by the definitions of these ice 
types. SDI and HDI consist of various kinds of level and deformed areas, whose  levels 
are likely very variable. NI is a common definition for all different new ice types less than   
10 cm thick, which may have highly variable levels of . Brash ice has usually very rough 
surface, but it is also very homogeneous in overall geometry. The 90% intervals for deformed 
ice types are on average the largest under dry snow and the smallest under wet snow condition 
which indicates that the attenuation of wet snow reduces the spatial variation of  compared 

o
Mσ

o
Mσ

°σ
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Figure 5.3 Mean and 90% confidence interval of °σ  for various ice types using the IMSI-97 
dry snow data averaged to a resolution of 25 m: (a) 5.4 GHz at an incidence angle of 23º, (b) 
5.4 GHz at 45º, (c) 9.8 GHz at 23º and (d) 9.8 GHz at 45º. 
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Figure 5.3 Continues. 

to dry and moist snow conditions. At VH-polarization the 90% intervals under dry and moist 
snow conditions are typically larger than at co-polarizations. 

The differences between the statistics of the VH- and co-polarized °σ  are due to the different 
dominating scattering mechanisms and unequal °σ  contrasts between LI and DI at these 
polarizations. The VH-polarized  is due to the multiple surface and volume scattering and 
co-polarized  mainly due to the single scattering events (Fung 1994). 

°σ
°σ
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Figure 5.4 Mean and 90% confidence interval of °σ  for various ice types using the PIPOR-
92B wet snow data acquired on February 20, 1992. The data were averaged to a resolution of 
25 m: (a) 5.4 GHz at an incidence angle of 23º and (b) 9.8 GHz at 23º. No data were acquired 
at an incidence angle of 45º. 
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5.3.2 Probability density function of σ°  
Examples of the estimated pdf’s for 5.4 GHz HH- and VH-polarized °σ  under dry and moist 
snow condition are shown in Figures 5.5 and 5.6. The shapes of the pdf’s at VV- and HH-
polarization are typically very similar. For OW, NI, level ice and brash ice types the shapes of 
the pdf’s are from close to the Gaussian pdf to very asymmetrical and irregular, depending on 
data set and channel. The pdf can also be asymmetrical, if the mean  is close to the 
HUTSCAT noise floor. Under dry and moist snow condition the shapes of the pdf’s for SDI 
and HDI are both usually irregular but have different skewness. The pdf for SDI has usually 
longer upper than lower tail whereas for HDI the relation is opposite, because SDI has more 
low backscatter level ice areas than high backscatter deformed ice areas contrary to HDI. 
Under wet snow condition the pdf’s are close the Gaussian pdf as wet snow reduces the 
contrast between level and deformed ice. The calculated pdf’s are used in maximum 
likelihood classification experiments in Chapter 5.3.4. 

°σ

5.3.3 Co- and cross-polarization ratios 

coR  and  for the IMSI-97 dry snow data are shown in Figure 5.7. The mean  for 
various ice types at 5.4 GHz and angle of 23º is mostly below 0 dB (min -2.0 dB), which 
likely indicates that the ice surface scattering dominates at C-band co-polarizations when 

crR coR

0θ  
is small, as was suggested in (Carlström and Ulander 1995, Dierking et al. 1999). At 45º and 
at 9.8 GHz also mean  values above 0 dB for all ice types commonly exist. In some cases 
these cannot be explained by the effect of the radar noise floor, and theoretical modeling of 

 would be needed to find explanations. The range of the mean  values for all surface 
types is quite small, below 2 dB at 23º and below 4.5 dB at 45º. 

coR

coR coR

The mean  usually decreases with increasing ice deformation and is larger for OW than 
for various ice types. Deformed ice types with very rough surfaces and various kinds of large 
deformation features probably generate on average more multiple surface and volume 
scattering than NI and level ice types, yielding low . From 23º to 45º the mean  mostly 
decreases because the  dependence of 

crR

crR crR

0θ σ°  is usually stronger at HH- than at VH-
polarization. The range of the mean  is always larger than that of the mean . Usually 
the 90% interval of  is the largest for NI and deformed ice types and the smallest for RLI, 
which generally follows the behavior of the 90% interval for 

crR coR

crR
σ° . 
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Figure 5.5 Probability density functions of 5.4 GHz HH- and VH- polarized  for various 
ice types using the IMSI-97 dry snow data. The data were averaged to a resolution of 25 m. 
HH-polarization at incidence angles of (a) 23º and (b) 45º. VH-polarization at (c) 23º and (d) 
45º. 
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Figure 5.5 Continues. 
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Figure 5.6 Probability density functions of 5.4 GHz HH- and VH- polarized  for various 
ice types using the EMAC-95 moist snow data. The data were averaged to a resolution of     
25 m. HH-polarization at incidence angles of (a) 23º and (b) 45º. VH-polarization at (c) 23º 
and (d) 45º. 

°σ
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Figure 5.6 Continues. 
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Figure 5.7 Mean and 90% confidence interval of (a) co- and (b) cross-polarization ratios for 
various ice types using OSIC-94 moist snow data acquired on March 26, 1994. The data were 
averaged to a resolution of 25 m. 

5.3.4 Maximum likelihood classification of surface types 
Before conducting maximum likelihood classifications, unsupervised principal component 
analysis was carried out in order to find out the number of main dimensions (dimensionality) 
for different multichannel combinations. Here the dimensionality is defined as the number of 
principal components that contain at least 90% of the variance of the dataset. According to the 
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results the dimensionality is usually one and at maximum two for various two- to six-
dimensional combinations of the channels. The two-dimensional combinations of the 
channels can be further reduced to one-dimensional channel ratios. All wet snow data sets had 
to be excluded from the classifications due to the small data amount for most of the ice types. 
The same data were used for the classification and estimation of the pdf’s. 

The mean accuracy of the classification is in all cases quite poor, only between 0.17-0.68. For 
OW and all ice types the discrimination accuracy varies very much from one data set to 
another, even from 0.0 to 1.0 for some ice types. With all single channels, the mean 
classification accuracy is around 0.50 which indicates that there are no noticeable differences 
in the classification capability between co- and VH-polarized channels and frequencies 5.4 
and 9.8 GHz. For  and , the mean accuracy is even lower. In summary, it is not 
possible to reliably distinguish various ice types and OW in C- and X-band SAR images only 
by an automatic intensity-based classification. However, only discrimination of NI and SLI 
from deformed and brash ice types would be useful for the SAR image interpretation, but the 
HUTSCAT data sets indicate that ice conditions under which these ice types are not 
discriminated are common. Discrimination of the surface types is further studied in the next 
Section using mean and std of . 

coR crR

°σ

5.3.5 Mean and standard deviation 
Mean and std of σ°  for small data sets describe the local spatial variation of  (nine 
HUTSCAT  values corresponds those from a 3x3 window in a SAR image), and thus 
knowledge on their statistics is useful for SAR image classification studies. The mean std is 
usually the largest for deformed ice types and the smallest for either NI, SLI or FBI. At VH-
polarization this difference between the ice types is larger than at co-polarizations. At HH- 
and VV-polarization both the mean standard deviations and the 90% intervals are roughly 
equal suggesting that at these polarizations the textural variations of 

°σ
σ°

°σ  are on average equal. 
For deformed and brash ice types the mean std at VH-polarization is under dry and moist 
snow condition always larger than at co-polarizations, but under wet snow condition no 
consistent difference is present. The snow cover condition has a clear effect on the mean std 
for deformed ice types; they are the largest under dry snow condition and the smallest under 
wet snow condition. The observed properties of the mean and the 90% interval of std can be 
explained similarly as in the case of the 90% interval of σ° . Due to the small range of mean 
std values and large 90% intervals, std does not discriminate unambiguously any surface type. 
The discrimination results are worse than those with mere °σ . 

Mean and std of  were used together to investigate discrimination of surface types. The 
discriminations between the surface types were evaluated visually using 90% confidence 
ellipses calculated with the principal component analysis for all dry snow and for all moist 
snow data sets separately, see Figure 5.8. Visual inspection indicates that it is possible at all 
polarizations to set a cut-off level for mean 

σ°

°σ  below which the surface type is either OW, NI 
or SLI. Another cut-off level can be set to discriminate FBI and DI from other ice types. An 
area of high mean and std of σ°  corresponds SDI or HDI. This works better at VH- than at 
co-polarizations. At 45º the ellipses are typically slightly more separated from each other than 
at 23º, but the difference between 5.4 and 9.8 GHz is small. Generally, the derivation of a 
coarse classification table based on the mean and std seems to be possible, but its usefulness 
in SAR image classification is likely quite poor. 
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Figure 5.8 Mean and standard deviation of nine 5.4 GHz HH- and VH-polarized σ°  for 
various surface types using all dry snow data sets averaged to a resolution of 25 m. HH-
polarization at incidence angles of (a) 23º and (b) 45º. VH-polarization at (c) 23º and (d) 45º. 
The ellipses represent 90% confidence limits. 
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Figure 5.8 Continues. 

5.3.6 Backscattering contrast between ice deformations and level ice 
The large scatter of σ°  values for SDI and HDI suggests that ice deformations and level ice 
areas in a deformed ice field have highly distinct levels of σ° . To study if this is the case, two 
1000 m long test lines of highly deformed ice measured under dry and wet snow conditions 
are plotted in Figures 5.9 and 5.10. The data for the test lines were averaged to the 12.5 m 
resolution. The figures show that the average contrast between level and deformed ice areas is 
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the highest for VH-polarization and practically non-existent for . The contrasts are 
noticeably larger for the dry snow than for the wet snow test line which is due to the radar 
wave attenuation in wet snow. The frequency dependence of the contrast is noticeable only in 
the dry snow test line at VH- and co-polarizations; the contrast is 2 to 5 dB higher at 5.4 than 
at 9.8 GHz. This is likely due to stronger volume scattering at 9.8 GHz. When the incidence 
angle increases from 23º to 45º only the contrast at 5.4 GHz VH-polarization for the dry snow 
test line clearly increases (about 3 dB). However, at 45º the co-polarized σ°  values for level 
ice areas are increased by the HUTSCAT noise floor. Generally, the 5.4 GHz VH-polarized 

 at 45º is the best variable to discriminate level and deformed ice areas in a deformed ice 
field. 

coR

σ°

The small average value of  for deformed ice areas suggests that multiple surface and/or 
volume scattering is considerable in various kinds of deformation features. Carlström and 
Ulander (1995) suggested that the main scattering mechanism at C-band VV-polarization in 
ice ridges is specular reflections from the major facets of the ice blocks, whereas Manninen 
(1992, 1996b) suggested that it is the incoherent surface scattering from ice blocks at both co- 
and cross-polarization. The results here suggest that Manninen’s conclusion is the right one as 
low  is (likely) not possible when specular reflections are dominating at co-polarizations. 

crR

crR

The high contrast between level ice and ice deformations at VH-polarization may indicate a 
possibility to discriminate them in fine resolution VH-polarized SAR images (resolution from 
5 to 10-20 m). At coarser resolutions (e.g. 100 m) it may be possible to relate the magnitude 
of the VH-polarized σ°  to the degree of ice deformation. The development of a such model 
would require some quantitative information on ice deformation (e.g. laser profiling of ice 
surface). 
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Figure 5.9 5.4 GHz HH- and VH-polarized σ° ,  and  as a function of distance for a 
highly deformed ice test line of the IMSI-97 dry snow/ice data. The data were averaged to a 
resolution of 12.5 m. The incidence angle is 23º. 

coR crR
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Figure 5.10 5.4 GHz HH- and VH-polarized σ° ,  and as a function of distance for a 
highly deformed ice test line of the OSIC-94 wet snow data acquired on March 23, 1994. The 
data were averaged to a resolution of 12.5 m. The incidence angle is 23º. 

coR crR

5.3.7 Comparison with previous results 
Generally, the HUTSCAT results for the behavior of the mean and standard deviation of σ°  
as a function of e.g. ice deformation agree with the previous studies. However, here std of σ°  
is on average equal at HH- and VV-polarization, but this was not case in (Dierking et al. 
1997) where  at HH-polarization was typically somewhat larger. This disagreement is 
likely due to different spatial resolutions; 25 m here and around 4.5 m in (Dierking et al. 
1997), and data amounts. The main disagreements are related to the surface type 
discrimination. According to (Hyyppä and Hallikainen 1992, Hallikainen and Toikka 1992) 
X-band provides slightly better classification results than C-band. Here the automatic 
classification results at C- and X-band were roughly equal. Dammert et al. (1994) reported 
that even seven ice type classes can have more or less separated signatures in the mean 

Ts

σ°  vs. 
 space under dry snow condition, but here this is not the case under any snow wetness 

condition. These disagreements may partly be due to the differences in the definitions of the 
ice type classes. Small amounts of data in most of the previous studies may also have 
reflected in the results. Additionally, Dammert et al. (1994) used much larger areas than here 
to calculate the mean  and  which likely diminished the local large variation of 

sT

σ° sT σ°  
leading to clearly separated ice type signatures. 
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5.3.8 Summary 
For the SAR image classification studies, the HUTSCAT results can be summarized as: 

(1) It is not possible to reliably discriminate open water and various ice types in C- and X-
band SAR images only by their level of σ° ,  or . Very likely just visual 
interpretation of SAR images gives better results than automatic intensity-based 
classification. 

coR crR

(2) Using a large number of SAR images it is possible to derive a coarse classification table 
based on the mean and standard deviation of σ°  for small windows, but its usefulness for 
SAR image classification is likely poor, because the signatures for various ice types are 
usually close to each other. 

(3) The high  contrast at VH-polarization under dry snow condition between level and 
deformed ice areas in a deformed ice field suggests a possibility to discriminate them in 
fine resolution SAR images (resolution < 10-20 m). At coarser resolutions it may be 
possible to relate the magnitude of VH-polarized 

σ°

σ°  to the degree of ice deformation. 

(4) Snow wetness has a large effect on the σ°  statistics. Notably, when snow cover is wet 
then the σ°  contrasts between various ice types are smaller than in dry snow case. 

(5) The following combination of the radar parameters: C-band, VH-polarization and an 
incidence angle of 45º, provides slightly better ice type discrimination accuracy than any 
other combination. 

5.4 L- and C- Band Polarimetric Discriminants 
Artic Sea ice classification studies with airborne and Space Shuttle SIR-C polarimetric SAR 
data have clearly indicated that better ice type classification is possible with polarimetric data 
than with only single channel data, e.g. (Scheuchl et al. 2004). RADARSAT-2 to be launched 
in 2007 will provide C-band polarimetric data over narrow 25 km wide swaths. These data are 
not suitable for operational monitoring of the Baltic Sea ice, but they will allow thorough 
investigation of the backscattering signatures and mechanisms of various ice types. In order to 
fully utilize the forthcoming spaceborne polarimetric data, it is good to conduct preliminary 
studies with airborne data. 
Polarimetric discriminants for various ice types were investigated in [P2] using one L-band 
and one C-and EMISAR image. The L-band image was acquired when snow cover was dry, 
whereas at the time of the C-band acquisition the snow cover was somewhat moist. The image 
data were in the slant-range scattering matrix format. In [P2] also the polarimetric 
discriminants for the Baltic Sea and Artic Sea ice types were compared to each other and 
image classification experiments were conducted, but they are not discussed here. Exactly the 
same images were studied in (Dierking and Askne 1998), but there the data were in the multi-
looked covariance matrix format. 

The statistics of the following polarimetric discriminants: co-polarization correlation 
coefficient , co- and cross- polarization ratios  and , phase difference  and 
coefficient of variation , were calculated by extracting 27 large windows from the images. 
Each window was divided into subsets of 40 by 40 pixels (60 by 60 m), denoted as coarse 
pixels which simulated pixel size of possible spaceborne wide swath polarimetric data. For 
each coarse pixel averages of the polarimetric discriminants were computed. The large 
windows represented one of the following ice types: NI (4 coarse pixels), LI (200), SDI (89) 
and HDI (152). 

coρ coR crR VVHH−φ
γ
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At C-band the mean  is mostly smaller than one; from 0.32 for NI to 1.04 for HDI, 
whereas at L-band it is larger than one; from 1.00 to 1.27.  decreases with increasing 

coR

coR 0θ  
at C-band, but at L-band there is slight increase. The C-band observations are consistent with 
a theoretical backscattering model for ice surface scattering. The explanation for L-band  
values over one is currently uncertain. The average  increases with increasing ice 
deformation at C-band (from 5.9 to 10.5), but at L-band it decreases (from 8.9 to 4.9). The C-
band behavior is contrary to the C-band HUTSCAT results in [P1]. The low C-band  
values for NI and LI could be due to the influence of the EMISAR noise floor. 

coR

crR

crR

The mean  is smaller at C- (from 0.08 to 0.20) than at L-band (from 0.23 to 0.42). The 
larger  is, more there is multiple scattering or heterogeneity in the scattering mechanism 
within the target. The wavelength at L-band is so large (24 cm) that strong multiple scattering 
within the ice volume is unlikely. Possible sources for multiple scattering are ice surface 
and/or ice-water interface (when rough), ice floe edges and ice ridges. Further work is needed 
to find out the exact sources. 

γ
γ

The mean  at C-band is very close to 0º, but at L-band it is clearly negative for NI and 
LI (-29º and -23º) and slightly negative for deformed ice types (max -9.5º). If the surface is 
lossy,  is negative with increasing negative difference with increasing  (Drinkwater 
et al. 1992). However, realistic values of 

VVHH−φ

VVHH −φ 0θ

rε  for sea ice cannot explain the observed values for 
NI and LI at L-band. Large values of VVHH −φ  are caused by the interference between up- and 
down-going waves in the ice layer resulting from scattering at the air-ice and ice-water 
boundaries (Winebrenner et al. 1995). VVHH −φ  oscillates as a function of ice thickness with a 
mean value of 0º. Also  oscillates as a function of thickness and is always below unity, 
which is contradictory to the observed values. 

coR

The mean L-band  is quite low and variable within the ice types (from 0.28 to 0.67). At C-
band mean  is roughly equal for all ice types (from 0.72 to 0.80). Low L-band values 
cannot be explained by dominating surface scattering. In the presence of volume scattering, 

 is low due to the ellipsoidal scatterers or preferential orientation of scatterers (anisotropy) 
(Nghiem et al. 1995). Occurrence of strong volume scattering at L-band within the ice layer is 
not likely. When the penetration depth is larger than thickness (i.e. the interference effect is 
present) varying ice thickness within sample area produces 

coρ

coρ

coρ

coρ  values significantly less than 
one (Winebrenner et al. 1995). In theory, the smaller coρ  is, the greater the variance of 

 and the larger  becomes. The L-band observations follow this behavior to some 
degree. 

VVHH −φ γ

The observations for  are roughly equal in (Dierking and Askne 1998) and [P2]. This is 
also the case for  with the exception that at L-band there is sign difference in level ice 

 values. For level ice the dominant scattering mechanism at C-band is very likely the 
ice top surface scattering as was the case in (Carlström and Ulander 1995) and (Dierking et al. 
1999). At L-band the scattering process seems to be more complicated: (1) If double-bounce 
scattering is dominating then 

coR

VVHH −φ

VVHH −φ

oo
VVHHcoR σσ=  is over one as observed, but then  and 

 should be very large, and this was not the case. (2) The interference effect resulting from 
scattering at the air-ice and ice-water boundaries can produce quite large  and low 

VVHH −φ

coρ

VVHH −φ coρ  
as observed here, but  is always less than one, which was not the case. (3) Coherent coR
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scattering also produces  values over one, but then coR coρ  should be very large. In 
conclusion, further work in needed to find out the dominating scattering mechanisms at        
L-band in this data set. 

5.5 Incidence Angle Dependence of C-band HH-polarization  °σ
For operational monitoring of the Baltic Sea ice RADARSAT-1 ScanSAR Wide and 
ENVISAT Wide Swath images at HH-polarization are currently used. Both images have large 
incidence angle ( ) range, RADARSAT-1 from 20º to 49º and ENVISAT from 16º to 43º. 
Successful implementation of the SAR classification algorithms is complicated due to this 
large  variation which causes significant changes in 

0θ

0θ σ°  level and contrast. To quantify and 
to allow compensation, at least partly, the 0θ  dependence of three statistical parameters: the 
mean , standard deviation and autocorrelation coefficient of texture (  and ) (Rignot 
and Kwok 1993), of the C-band HH-polarized 

σ° Ts Tρ
σ°  signatures were investigated in [P3] using 

RADARSAT ScanSAR Narrow image pairs. During the time of this study these images were 
used for operational sea ice monitoring. These images have a 0θ  range either from 19º to 39º 
(SNA type image) or 30º to 46º (SNB). HUTSCAT data were also used to study the 0θ  
dependence of the mean . The main reason for using the HUTSCAT data was its good 
classification to a total of seven different ice types using video imagery, whereas it was 
feasible to classify the RADARSAT-1 data only to two ice types, and thus the HUTSCAT 
results present a good comparison dataset for the RADARSAT-1 ones. 

σ°

The dependence between the mean σ°  and 0θ  in the HUTSCAT data was derived from the 
difference between the mean  dB-values at angles of 23º and 45º divided by the angle 
difference of 22 degrees, i.e. the dependence was assumed to be linear in dB-scale and 
described by a slope in dB/1º units. The results are in Table 5.6. The mean slope values were 
also derived for all ice types except for NI as for it the mean slope did not seem to be 
meaningful. The results show that the slope depends on the ice type and has quite large 
variation for each ice type caused by variable ice conditions in the data sets. The average 
slope is the smallest (from -0.10 to -0.19 dB/1°) for HDI and FBI and the largest (from -0.20 
to -0.31 dB/1°) for SLI and RLI. The small average slope FBI and HDI is very likely due to 
their large surface roughness (Manninen 1997a) and more varying local incidence angles. 
Theoretically (IEM σ°  model (Fung 1994)) the slope decreases with increasing surface 
roughness. The data amount is too small to reliably determine the dependence between the 
average slope and snow condition, but it is possibly the largest one under wet snow condition. 

σ°

From the RADARSAT-1 ScanSAR image pairs, windows of size 1.1 by 1.1 km (11 by 11 
pixels) representing either LI or DI in fast ice areas of the Bay of Bothnia were visually 
selected. Windows were not selected over NI; although it can be stationary between the image 
acquisitions, its thickness and surface characteristics may change considerably during that 
time. The chosen size of the window was a compromise between the requirement of a large 
window for accurate calculation of the statistical parameters and a small window for keeping 
the ice area within the window as homogeneous as possible. The windows of an image pair 
provides  difference ( ) and 0θ 0θΔ σ°  difference ( °σΔ ) pairs from exactly the same areas. 
Within one image pair the range of the 0θΔ  values varies from 11 to 30 degrees. The 
azimuthal viewing angle difference between the windows is around 140 degrees. The number 
of selected windows ( ) in one image pair for each ice type varies from 118 to 1359, and the 
average is around 470. 

n
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Table 5.6 The slope of the incidence angle dependence (dB/1°) of the mean 5.4 GHz HH-
polarized ’s of the various Baltic Sea ice types using the HUTSCAT data sets acquired at 
incidence angles of 23 and 45 degrees. 

σ°

Data Set Snow
Class NI SLI RLI SDI HDI LBI FBI 

21 Mar 1992 Dry     -0.13  -0.06 
21 Mar 1997 Dry  -0.17 -0.18 -0.19 -0.22 -0.14   
23 Mar 1997 Dry  -0.21 -0.23 -0.17 -0.18  -0.14 

Mean Dry - -0.20 -0.21 -0.20 -0.15  -0.10 
12 Mar 1992 Moist    -0.10 -0.14   
26 Mar 1994 Moist -0.21  -0.22 -0.18 -0.11  -0.14 
4 Apr 1995 Moist   -0.21 -0.21 -0.06   
6 Apr 1995 Moist -0.07 -0.12 -0.19 -0.14 -0.08  -0.13 

Mean Moist - - -0.21 -0.16 -0.10  -0.14 
10 Feb 1992 Wet  -0.28  -0.17 -0.16  -0.15 
23 Mar 1994 Wet  -0.33  -0.27 -0.22 -0.16  

Mean Wet - -0.31 - -0.22 -0.19 - -0.15 
 

As the scatter plots of °σΔ  vs.  indicated in most cases a very linear relationship between 
 and  for both ice types, the following linear regression model was assumed: 

θΔ
°σΔ θΔ

( )2
010 ,~ σθΔ+°σΔ bbN . (5.2)

This model provided much better coefficients of determination (r2) than using only windows 
of a single SAR image, i.e. the linear regression of the mean °σ  on 0θ . This is demonstrated 
in Figure 5.11. The better accuracy can be explained by the fact that mean  values at 
different incidence angles from exactly the same areas were used for the model fitting. 

°σ

The mean  vs.  for level ice and deformed ice under dry snow condition is shown in 
Figures 5.12 and 5.13 using data sets yielding the best and the worst r

°σΔ 0θΔ
2. A summary of the 

results using 21 image pairs for dry snow and 7 pairs for wet snow condition is presented in 
Table 5.7. The contribution of the fading to the results is very small as the std of mean °σ  is 
below 0.16 dB. 

The RADARSAT-1 derived average slopes under dry snow condition are very close to 
HUTSCAT ones, but under wet snow condition they are somewhat larger. However, more 
HUTSCAT wet snow data would be needed to verify the difference. The RADARSAT-1 
results also show correlation between the slope of the linear °σ  incidence angle dependence 
and the ice type. Under both dry snow and wet snow condition the average slope is larger for 
LI than for DI which is in agreement with the HUTSCAT results. Thus, the contrast between 
LI and DI increases with increasing 0θ . The average slope is somewhat larger under wet 
snow than under dry snow condition. When snow cover is wet the dominant scattering source 
is the snow top surface which is usually smoother than the ice surface (Manninen 1997a). The 
dielectric constant  of the scattering surface also has an effect on the  incidence angle 
dependence (Fung 1994). For wet snow the imaginary part of 

rε °σ

rε  ( rε ′′ ) is larger than for low 
salinity dry ice surface. The smoother the surface or the larger rε ′′ , the more rapidly  drops 
off with increasing  (Fung 1994). 

°σ

0θ
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Figure 5.11 (a) Observed mean  vs. °σ 0θ  and (b) mean °σΔ  vs. 0θΔ  for deformed ice using 
11 by 11 pixel windows selected from SNB and SNA RADARSAT images acquired on 
February 22 and 23, 2000, respectively, under dry snow condition. The dB-scale in (a) is 
arbitrary. The relative calibration difference between the SNA and SNB images is 
compensated in (a). 
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Figure 5.12 Observed mean  vs. °σΔ θΔ  for level ice under dry snow condition. (a) The best 
coefficient of determination (90.7%) using the RADARSAT image pair acquired on March 8 
and 10, 1998. (b) The worst coefficient of determination (32.6%) using the RADARSAT 
image pair acquired on February 6 and 7, 1999. 
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Figure 5.13 Observed mean  vs. °σΔ θΔ  for deformed ice under dry snow condition. (a) The 
best coefficient of determination (86.4%) using the RADARSAT image pair acquired on 
March 5 and 7, 1998. (b) The worst coefficient of determination (34.5%) using the 
RADARSAT image pair acquired on March 6 and 7, 2000. 
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Table 5.7 The results of the linear regression between the mean °σΔ  and  using the 
RADARSAT-1 ScanSAR Narrow data. 

0θΔ

Ice Type Snow 
Class Number of Slope term  [dB/1°] 1b r2 [%] 

  Image Pairs Mean Std Min Max Mean Min Max 

LI Dry 21 -0.25 0.04 -0.19 -0.34 79.9 32.6 90.7 

DI   -0.21 0.04 -0.12 -0.30 70.2 34.5 86.4 

LI and DI   -0.23 0.05 -0.12 -0.34 75.1 32.6 90.7 

LI Wet 7 -0.34 0.08 -0.19 -0.46 59.9 18.8 75.2 

DI   -0.27 0.08 -0.16 -0.37 48.6 29.4 71.3 

LI and DI   -0.31 0.08 -0.16 -0.46 54.3 18.8 75.2 
 

The ranges of slope values are also large with the RADARSAT-1 data, the difference between 
the maximum and minimum values is nearly 0.3 dB/1°. This is due to different specific ice 
conditions during acquisitions of SAR image pairs and due to the sometimes inaccurate 
classification of data into two ice types without any ground truth. All wet snow image pairs 
are from the melting period of sea ice in spring when ice melting constantly modifies ice and 
snow characteristics. Additionally, air temperature data may not always accurately indicate 
whether snow wetness has been unchanged between the acquisition of the image pair and one 
day before the acquisition of the first image. A thermodynamic snow/ice model would better 
estimate the snow cover wetness class. 

r2 varies substantially under both snow conditions. Under dry snow condition the average r2 is 
nevertheless quite high, 79.9% for LI and 70.2% DI, whereas under wet snow condition it is 
somewhat lower, 59.9% and 48.6%, respectively. However, in many image pairs with small r2 
the likelihood of the linear  incidence angle dependence is visually confirmed, and the 
small r

°σ
2 is due to the large scatter of data. Additionally, according to a t-test the linear 

regression was significant in ever image pair (P-value always 0.00). As DI data have large 
scatter caused by various kinds of deformed ice features and azimuthal look angle dependence 
of ice ridge , r°σ 2 is typically lower for DI than for LI. 

In general, the RADARSAT-1 and HUTSCAT results agreed with each other and they were 
also supported by theoretical backscattering model calculations (for details see [P3]): the 
more deformed ice the smaller the slope, and the higher moisture content of ice or snow the 
larger the slope. 

In case of  and  it was very difficult to find accurately any kind of relationship between 
 or  and , due to the very large scatter of data points. Consequently, a thorough 

linear regression study of the data was not conducted. The average change of  or  as a 
function of  is very small, but for individual windows the change can be significant with 
either a positive or negative trend. 

Ts Tρ

Ts Tρ θΔ

Ts Tρ

0θ

Using the RADARSAT-1 results for the °σ  incidence angle dependence Karvonen et al. 
(2002) developed an incidence angle correction algorithm for the ScanSAR images. It is used 
in the FIMR’s operational SAR classification algorithms (see Chapter 4.5). 
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5.6 Dependence between Standard Deviation and Measurement 
Length for C-band σ  °

Surface roughness measurements of various Baltic Sea ice types have indicated fractal-like 
nature of the ice surface (Manninen 1997a). In general fractal-like nature of the surface 
roughness has been observed for many natural surfaces, e.g. for cultivated soil in (Yordanov 
and Guissaird 1997, Davidson et al. 2000). This gave an idea to study whether this fractal-like 
nature extends from a property of sea ice roughness to a property of °σ . Empirical studies 
performed for several SAR data sets measured over many natural targets suggest that this 
could be the case, e.g. (Manninen and Ulander 2001). The aim of [P4] was to determine if the 
rms variation of the Baltic Sea ice  data depends on the length of measurement , and if it 
does, then assess its usability for SAR image classification. The study was conducted using 
the HUTSCAT data acquired in 1992-2003 and two ENVISAT IMP images at HH-
polarization and two APP images at HH/HV-polarization acquired over the northern part of 
the Bay of Bothnia in February 2003 (see Table 5.10). 

°σ l

5.6.1 Theoretical background 
The continuous self-similar Gaussian process , indexed by a Hurst parameter )(tBH H  
( ), which has the fractional Gaussian noise (fGn) as its stationary increment process, 
is called fractional Brownian motion (fBm), e.g. (Beran 1994). Due to the Gaussianity, the 
process  is fully specified by the expected value and the covariances. Based on the 
value of 

10 << H

)(tBH
H  the corresponding fBm can be classified into three different categories (Beran 

1994(. If , then the associated increment process fGn is long-range dependent 
(positive correlation between increments far apart), if 

)1 ,2/1(∈H
2/1=H  the associated increment 

process consists of independent, identically distributed (IID) normal variables (the ordinary 
Brownian motion), and if , the increment process shows only short-range 
dependence (negative correlation between two successive increments). For a fBm profile the 
fractal dimension  is defined as 

)2/1 ,0(∈H

D HD −= 2 . 

Due to their inherent nature, fractals are analyzed by multiscale methods, e.g. box counting 
method and wavelet analysis (Mallat 1989). For image data, local fractal dimension (LFD) 
has been used as a feature in texture classification in many studies, e.g. (Chen et al. 1993, 
Ewe et al. 1997, Gambine et al. 2004). Typically LFD is estimated in windows around each 
data pixel. Usually suitable window sizes for LFD estimation are defined experimentally, as 
compromises between desired classification resolution and precision of the estimates. In 
several studies, comparisons of the estimates to fractal images with known  have been 
made, and it seems that the estimates are typically not very accurate, e.g. (Chen et al. 1993). 

D

In [P4]  is estimated using the power-law form functional dependence of standard deviation 
 of a fBm profile on the measurement length  described by (4.6) (Church 1988). Here the 

coefficient b  of (4.6) equals 

D
σ l

H . Different correlation structures of the increment processes in 
fBm result in different growing rates of σ  as a function of . l

Even for a stationary process with single scale autocorrelation function (ACF) the sample σ  
increases with increasing l  if the samples are positively correlated. This is demonstrated by 
the expression for the sample variance  of  correlated measurement  with the same 

finite variance  (Beran 1994): 

2s n iX
2σ
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where the bias term is the sum of the pairwise correlations: ∑
≠

ρ=ρδ
ji

n ji
n

).,(1)(  

If the correlations far apart decrease to zero, the bias term in (5.3) becomes negligible when l  
is long enough. In these situations  increases with increasing l , the exact form of increase 
depending on the prevailing correlation structure. 

σ

5.6.2 Analysis methods 
σ  as a function of length  is calculated from profile data in the following steps: (1) A profile 
is divided into disjoint segments with a fixed length giving n  segments per profile.  
(2) A window of length d  is slid through a segment by one sample steps. In every allowed 
window position  is computed. This yields m  distinct 

l

σ σ  values for every segment. (3)  
values of  are averaged for each segment separately. (4) The steps (2) and (3) are repeated 
when  increases from the minimum to the maximum length. (5) For each segment (4.6) is 
fit using  as the explaining variable. This yields  sets of regression coefficients ( , b ) for 
each profile. The coefficient  yields information how the large and small scale variations 
occur in a given segment. This information cannot be extracted from  or ACF statistics 
because they are calculated only at one fixed length. If the fractal-like property holds, the 
proposed approach would give new information about the nature of the local oscillation 
structure of signal statistics. 

m
σ

d
d n a

b
σ

The accuracy of the calculation method for revealing the true nature of the dependence of σ  
on  was studied in three disparate cases using simulated data sets. The first data sets 
consisted of simulated fBm profiles, with 

l
H  values of 0.1, 0.3, 0.5, 0.7 and 0.9. At each H  

value ten profiles of length 1024 points were simulated using the freeware Fraclab-software in 
Matlab (Fraclab). The second data set was single scale Gaussian and exponential ACF 
profiles. Their length was 1000 points, σ  was fixed to 5 points and profile correlation length 

 had values of 5, 50 and 100. Ten profiles were simulated at each  value. These profiles 
exhibit functional dependence between 
L L

σ  and , if the profile length is relatively short with 
respect to . The third data set was profiles of random fading with length of 1000 points. 
Fading with 10 and 50 independent samples (

l
L

N ) was also added to the fBm and single scale 
ACF profiles to simulate radar measurements. The first figure of N  is a rough estimate for 
the ENVISAT data, and the second one for the HUTSCAT data. 

D  was estimated using both full length profiles and separate segments with length of 20, 40, 
and 60 points. Segment-wise analysis emulates analysis of the radar data, where segment 
length of 40 points is used. For a single profile it produces a large number of  estimates 
which are all averaged together. In case of the fBm profiles, these  estimates are compared 
to those obtained with the Fraclab (calculates regularization dimension (Roueff and Véhel 
1998)). 

D
D

Before the analysis, the minimum and maximum length for  (  and ) in Step (4) 
must be chosen.  was chosen to be five profile points. When  increases, the amount of 
sample estimates of  decreases and their average is subject to greater random variation. The 
choice for  depends on how much random variation is allowed. In (Manninen 2003), 

 was chosen empirically to be 60% of the segment length. After testing with various 
limits it was concluded that the 60% limit is also appropriate here. 

d mind maxd

mind d
σ

maxd

maxd
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The magnitude of b  variation for a segment of 40 points from fBm profiles without and with 
fading is illustrated in Figure 5.14 using probability density functions (pdf). In case of the 
original fBm profiles the pdfs at different values of  have a very wide support and overlap 
with each other and, thus, accurate separation between the profiles with different  values is 
not possible. However, the empirical mean values and modes of the b  values preserve the 
theoretically correct ordering as a function of . Therefore, a single b  value is a meaningful 
discriminant. After fading is added to the fBm profiles, the pdfs with different theoretical  
are wide and totally mixed with each other, making classification of the segments based on a 
single  value impossible. However, the average b  values shown in Table 5.8. are still 
clearly larger than the average b  of 0.02 for random fading. 

D
D

D
D

b

The main results of the analyses with different types of profiles can be summarized as 
follows: (1) The analysis method can reliably detect whether σ  in short profile segment 
increases with increasing  according to (4.6) if this is theoretically the case. (2) There exist 
non-fractal profiles which on short intervals exhibit the same kind of power-law dependence 
between  and l  as a fBm realization. (3) Using only short segments of profile data, it is not 
possible to determine if a profile is truly fractal-like. (4) If the textural variation of the sea ice 

 follows fBm behavior, then the analysis method, using small segments of the measured 

l

σ

°σ °σ  
data, would yield quite constant slope term  regardless of  for the ice type  texture and, 
thus, very poor classification of ice types. However, the average b  would be clearly larger 
than that for an IID process. (5) If  texture follows behavior of a profile with Gaussian or 
exponential ACF, then short segments would yield average b  with only small range of values 
as function of texture . The average b  would again be larger than for the IID process.  
(6) Finally, if the variation of the sea ice 

b D °σ

°σ

L
°σ  data is an IID process, then within the small 

segments the linearity between ln( ) and ln( l ) would be very weak and the average  very 
close to zero. 

σ b

Table 5.8 Estimated average fractal dimension  and coefficient of determination of (4.6) 
for fBm profiles. Fading characterized by 50 independent samples. 

D

Segment =40 n
Theoretical 

 Without
fading 

With 
fading 

D

1.89 
0.86 

1.92 
0.82 1.9 

1.76 
0.93 

1.88 
0.88 1.7 

1.60 
0.96 

1.87 
0.85 1.5 

1.45 
0.98 

1.88 
0.83 1.3 

1.29 
0.99 

1.92 
0.75 1.1 
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Figure 5.14 PDFs for the slope term b  of (4.6) estimated from the 40-point segments of ten 
fBm profiles (a) without and (b) with random fading process. Theoretical  is from 1.1 to 
1.9. The bin width is 0.1 in the pdfs. Number of b  coefficients at each  value is 250. 

D
D

Analysis of HUTSCAT and ENVISAT Data 
For the HUTSCAT data classified to dry, moist and wet condition and averaged to a 
resolution of 12.5 m, the segment length in (4.6) was chosen to be 40 consecutive  values, 
which corresponds to the measurement length of 487.5 m. The chosen segment length is a 
compromise between a long segment for a large number of points in (4.6) and a short segment 

°σ
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applicable for informative classification. The number of segments for an ice type varies from 
4 to 105. 

Rectangular areas representing LI, DI, and HDI were visually selected from each rectified 
ENVISAT SAR image. A typical area of a rectangle was 15 km2. Within each rectangle, 10 
windows of size 40 x 40 pixels (1000 x 1000 m) were selected at random locations. The 
average number of windows for each ice type is around 140. Equation (4.6) was calculated as 
in the case of the HUTSCAT data, but the average σ  was calculated separately for horizontal 
and vertical direction and then these two estimates were averaged together as no noticeable 
anisotropy was detected. The segment length of 40 °σ  values corresponds to a measurement 
length of 975 m. 

5.6.3 HUTSCAT results 

A clear linear dependence between  and ln(std()ln(l °σ )) was typically observed in the 
HUTSCAT  segments of various ice types. The average coefficient of determination r2°σ  for 
all data is 0.84, and for only 23% of the total of 3096 segments r2 is below 0.80. An example 
of statistics for r2 and  is presented in Table 5.9. Dependence between  and ln(std(b )ln(l °σ )) 
for those segments where r2 has its maximum or minimum value for each ice type is shown in 
Figure 5.15 at HH- and VH-polarization. When the measurement lines of various ice types are 
used in their full length (max 60% length 6.5 km, average 650 m) in (4.6), the average r2 is 
still high, 0.84 and there is no correlation between r2 and the measurement length. This 
suggests an increase of std(σ° ) as a function of  up to a distance of at least a few kilometers. l

Table 5.9 Statistics for the coefficient of determination r2 and regression coefficient  of 
(4.6) using 5.4 GHz HH-polarization HUTSCAT scatterometer data acquired at an incidence 
angle of 23 degrees under dry snow condition. 

b

NI SLI RLI SDI HDI FBI  

Data amount 13 29 21 27 105 19 
Average r2 0.89 0.84 0.82 0.92 0.83 0.79 

std r2 0.15 0.19 0.27 0.08 0.23 0.25 
Average b 0.150 0.118 0.147 0.177 0.141 0.093 

std b 0.107 0.113 0.155 0.113 0.100 0.083 

 

The statistical confidence of the obtained  values was estimated using the variation 
coefficient ( vc ) of std( ) and applying t-test to the following hypothesis : H0: 

b
0=b°σ ; 

H1: ; risk level 0.05. The average  for windows of length from 5 ( ) to 24 pixels 
( ) decreases roughly exponentially from 0.65 to 0.20. The hypothesis H0 is rejected for 
92% of the total b  values. It is concluded that: (1) the obtained b  values typically have high 
statistical confidence; (2) b  values are not considerably influenced by limited sample sizes 
for the average std( ), and (3) the large stds of b  shown in Table 5.9 are due to the large 
statistical variability of the individual segments. 

vc mind0>b
maxd

°σ

Comparison between HUTSCAT results and those for the simulated profiles suggested that 
 as a function of  for sea ice cannot be described completely either by fractal, single scale 

ACF or random process of IID variables. The dependence is likely a more complicated 
process. 

lσ°

The average  is usually the largest for SDI (from 0.094 to 0.250) and the smallest for FBI 
(from 0.067 to 0.174). These averages are clearly larger than the values obtained for profiles 

b
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of random fading. In case of a fBm profile, the smaller  is, the more uniformly and densely 
distributed are the significant changes in the profile. FBI is has very homogeneous surface 
structure, and thus its  has typically small textural variations without any large scale 
patterns, resulting a small b  value. Whereas in the case of SDI, the overall level of the 

b

°σ
°σ  

may remain low (or high) on a relatively long interval before a large jump. The large scale 
variation for SDI induced by the ridging intensity variation is greater than the local variation 
due to the small scale roughness and fading, yielding a large b . HDI exhibits also variation 
between ridged ice and LI as SDI, but the fraction of ridged ice is consistently high, and thus, 
the large scale variation of  is smaller than for SDI. °σ

There are no systematic differences on the average b  values between HH- and VV-
polarizations. Under all snow conditions the average  at VH-polarization for SDI, HDI and 
FBI is consistently larger; on the average by 33%, than at co-polarizations. At VH-
polarization the σ°  contrast between LI and DI is larger than at co-polarizations [P1] yielding 
increased large scale textural variation of 

b

. σ°

When  increases from 23º to 45º, the average  at co-polarizations for SDI and HDI 
always increases, on the average by 30%. For level ice areas in a deformed ice field, the 
magnitude of decrease of σ°  with an increasing 

b0θ

0θ  is larger than for deformed ice areas, 
which produces more pronounced large scale variation of σ°  at angle of 45º [P3]. At VH-
polarization both increasing and decreasing trends exist, likely due to the smaller σ°  
incidence angle dependence [P1]. 

Under wet snow condition the average b  is always smaller than under dry and moist snow 
condition; the relative difference to dry snow condition is around 75%. This can be explained 
by the reduction of the spatial variation of σ°  due to the smooth wet snow surface. It is noted 
that the effect of snow cover should be studied by measuring the same ice field under various 
snow wetness conditions. This is possible with the ENVISAT data. 

When the data resolution decreases, textural variations of °σ  are more and more averaged, but 
the effect of fading is decreasing. Thus, the large scale °σ  oscillations become more 
pronounced and the average  increases, up to some resolution limit. The effect of the 
resolution was studied by calculating average b  values also at a resolution of 25 m for a 
distance of 487.5 m. From resolution of 12.5 m to 25 m, the average b  increases in almost all 
cases. The increase is the smallest for SDI and HDI (average 13%) and the largest for SLI and 
FBI (average 56%) which have smaller textural variations than other ice types, and, thus, 
when the fading decreases they become more visible. 

b

The distribution of the b  and  values is so large that unambiguous ice type discrimination is 
not possible, which is understandable as the ice roughness variation and, thus, also the 

a
°σ  

variation constitute a continuum instead of distinctly separable classes (Manninen 1997a). On 
the basis of Figure 5.16, the DI types (HDI, SDI, FBI) are as well separated from LI areas as 
by using only mean and std of . Generally, both methods perform equally well for the 
HUTSCAT data when the window size is relatively large (40 pixels). The disadvantage of 
using the std values is that they are fixed for a certain distance. The results here suggest that 
there are two uncertainties in the estimation of std for 

°σ

°σ  data: (1) uncertainty due to the 
sampling size, and (2) std depends on the measurement length. Hence, an accurate 
comparison with corresponding std values of different studies does not seem to be possible if 
the distance used for their determination is not equal. 
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Figure 5.15 The dependence between  and  for various ice types using the 
HUTSCAT 5.4 GHz dry snow Baltic Sea ice data. (a) and (c) the strongest, and (b) and (d) 
the weakest dependence at HH- and VH-polarization, respectively. The section length is 40 

 values (distance of 487.5 m). The incidence angle is 23º. The maximum and minimum r

)ln(l ))(stdln( oσ

2°σ  
for each ice type are given. The vertical line shows the maximum distance used in (4.6) 
according to the 60% rule. 
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Figure 5.15 Continues. 
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Figure 5.16 Variation of (a) regression coefficients a  and b  of (4.6) and (b) the mean and std 
for a section of 40 °σ  values of various ice types using the HUTSCAT 5.4 GHz HH-
polarization dry snow Baltic Sea ice data. The incidence angle is 23º. Ellipses represent 90% 
confidence limits. 
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5.6.4 ENVISAT results 
The average r2 for all data is very high (0.98), and only 6.2% of the total of 2460 r2 values is 
below 0.95. The average r2 is larger than in the HUTSCAT data due to the very large amount 
of distinct std( ) values available for averaging in the ENVISAT data. An example of the 
dependence between  and ln(std(

°σ
)ln(l °σ )) for the ENVISAT data in shown Figure 5.17. For 

LI, DI, and HDI, the average  varies from 0.058 to 0.144, see Table 5.10. These averages 
are larger than that of around 0.03 for random fading. The hypothesis, H

b
0: ; H0=b 1: , is 

always rejected with risk level 0.05 and, and  is on the average around 0.6 at  and 
decreases to 0.3 at , indicating high statistical confidence of the calculated b  values. 

0>b
vc mind

maxd

The average  always increases with increasing ice deformation (89% on the average). At 
HV-polarization, the average  for HDI is always slightly larger (23% on the average) than at 
HH-polarization. The effect of snow wetness was studied with the SAR images of February 
16 and 19 acquired over the same ice field. Under dry snow condition, the average  at HH-
polarization is always a little larger (on the average 13%) than under moist snow condition. 
This suggests that a smooth moist snow cover reduces the large scale textural variation of 

b
b

b

. °σ

Table 5.10 Statistics for the regression coefficient b  of (4.6) using ENVISAT SAR data 
acquired in the Bay of Bothnia in February 2003. 

Image 
Swath 

Polari-
zation 

Inc. 
Angle 

Snow
Cover Average b Std b Date Data Amount 

     LI DI LI LI DI HDI LI DI HDI 

14 
Feb 

IMP 
IS3 

28.6- 
30.9 HH Dry 140 140 130 0.058 0.107 0.113 0.010 0.037 0.025

15 
Feb 

APP 
IS6 

HH 
HV 

39.1- 
42.6 Dry 110 150 150 0.061

0.066
0.100
0.090

0.122
0.144

0.010 
0.008 

0.025 
0.025 

0.025
0.037

15.3- 
20.5 

16 
Feb 

IMP 
IS1 Moist 110 150 150 0.060 0.087 0.103 0.011 0.022 0.024HH 

19 
Feb 

APP 
IS2 

HH 
HV 

19.6- 
24.7 Dry 110 150 150 0.070

0.074
0.099
0.094

0.111
0.142

0.010 
0.016 

0.023 
0.027 

0.024
0.040

 

Equation (4.6) was also studied using a window of size 80 x 80 pixels (2000 x 2000 m) for the 
SAR image of February 15. The average r2 decreases only very slightly when the window size 
increases. The average  for LI and HDI decreased on the average 26% and 19%, 
respectively. This decrease could indicate that the dependence of 

b
°σ  is changing as a function 

of the spatial frequency. 

A typical increase of std( ) in dB-scale with increasing N x N window size was investigated 
using the ENVISAT image of February 14. The average std(

°σ
°σ ) for LI increased from  

1.87 dB for the 5 x 5 window to 1.96 dB for the 20 x 20 window. For HDI, the corresponding 
values are 2.34 and 2.73 dB. For LI, the increase is subtle, but for DI types it is noticeable. 

In general, the ENVISAT results and their explanations are identical to the HUTSCAT ones. 
The differences are likely due to the different number of independent samples and different 
ice type definitions. The discrimination capability of the coefficient pair ( a , ) is comparable 
to that of mean and std of  when the window size is 1000 m. An example of the  
coefficient and std( ) calculation for whole SAR image is shown in Figure 5.18. Both  
and std( ) images have lower values for LI than for DI, also different kind of edges, like 
ship channels, are seen in the images. 

b
b°σ
bσ°

σ°
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Figure 5.17 Strongest (a) and weakest (b) dependence between  and  for 
three ice types using ENVISAT HH-polarization data acquired over the Bay of Bothnia in 
February 14, 2003. The section length is 40 

)ln(l ))(stdln( oσ

°σ  values (distance of 975 m). The pixel size in 
the ENVISAT data is 25 m. The maximum and minimum r2 for each ice type are given. The 
vertical line shows the maximum distance used in (4.6) according to the 60% rule. 
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Figure 5.18 (a) ENVISAT HH-polarized IMP SAR image acquired on February 14, 2003. 
The SAR image was rectified to the Finnish Uniform Coordinate System with a 25 m pixel 
spacing. (b) the b  coefficient of (4.6) and (c) std of °σ  in dB calculated using a window of 40 
by 40 pixels. 

5.6.5 Summary on classification of ice types 
The scatter in the values for b  and  in both HUTSCAT and ENVISAT data is so large that 
unambiguous ice type discrimination is not possible either using one of them alone or both 
together. DI types were mostly discriminated from other ice types, but this discrimination was 
not essentially better than that obtained with just the mean and std of 

a

°σ . It is possible that a 
relation exists between b  computed from the surface profile of large scale sea ice 
deformation, i.e., the slope term for ln( ) versus ln(std(surface height)), and b  computed 
from the  profile. This assumption could only be studied with quantitative ground truth 
data describing ice surface topography. The use of parameters b  and  instead of std and 
mean is preferred due to the scale-invariant comparability with the results of other studies 
obtained with different calculation window sizes and with radar instruments of different 
resolutions. Generally, the dependence of std(

l
°σ

a

°σ ) on l  could be utilized in the SAR 
classification, e.g., by designing a classifier which uses multiple different window sizes as a 
feature vector. 
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5.7 Comparison between °σ  Time Series and Thermodynamic 
Snow/Ice Model 

FIMR has developed classification algorithms for identification of different ice types and 
open water and for estimation of sea ice thickness in the SAR images. Interpretation of the 
classification results is often difficult, because the algorithms utilize mainly the image 
structure and little or even no geophysical information are utilized. The classification results 
should very likely improve with the addition of this information. Additionally, the current 
knowledge on how changing weather and sea ice conditions change °σ  of various ice types is 
very limited, only the effect air temperature (Lundin 2001) and coarse snow wetness classes 
[P1] on  has been studied so far. °σ

For the Arctic Sea ice, SAR  time series have been compared with thermodynamic 
parameters of sea ice in several studies. The sea ice targets in these studies were landfast 
smooth first-year ice (FY) and multiyear ice (MY) in the Canadian Arctic Archipelago. An 
overview of several studies conducted with ERS-1 and RADARSAT-1 data is presented in 
(Barber et al. 2001). In a few studies a thermodynamic model of sea ice has been coupled 
with a theoretical  model (Barber and Thomas 1998, Barber and Nghiem 1999). The main 
results are: (1) Typical time evolution of C-band HH- and VV-polarization  has been 
determined for FY through seasonal periods of freeze-up, winter, early melt, melt onset and 
advanced melt. The temporal evolution of FY 

°σ

°σ
°σ

°σ  is strongly linked to ice thermodynamics 
(Barber et al. 2001). (2) In FY, the melt onset is denoted by a rapid increase in . When 
snow wetness increases to 1-3%, the large brine-wetted snow grains in the basal layer likely 
contribute a significant volume scattering term to 

°σ

°σ . As wetness further increases, but is still 
within the pendular regime, snow surface scattering becomes also significant (Barber et al. 
2001). (3) Net shortwave energy flux explains a statistically significant portion of the 
observed seasonal variation of FY °σ  (Barber et al. 1995). (4) Inversion of surface albedo 
from RADARSAT-1 data over FY is possible throughout the melt season (from early to 
advanced melt) (Hanesiak et al. 2001). (5) Dependence of °σ  on snow thickness was found 
over smooth thick FY (Barber and Thomas 1998, Barber and Nghiem 1999). There is a 
increase in  from a cold snow (< -13ºC) to a warm snow (> -6ºC) case during winter season 
caused by the thermal modification of brine volumes in snow and sea ice. The amount of 

°σ
°σ  

increase is weakened as the snow cover becomes thicker. 

Due to the differences between the Artic and Baltic Sea ice discussed in Chapter 1, these 
results may not be directly valid for the Baltic Sea ice. Therefore, in [P5] a time series of      
C-band HH-polarized °σ  of the Baltic Sea land-fast level ice were compared with the results 
of a 1-D thermodynamic snow/ice model. The objectives of the study were: (1) to study how 
the model results of sea ice thermodynamics help to understand the changes in the  time 
series, and (2) to find out which thermodynamic parameters mainly cause the  changes. 
The study period began in the middle of the winter, February 3, 2004, and ended in the early 
melt season, April 7, 2004. The  time series were obtained from ENVISAT SAR images 
(Table 5.4). The snow/ice model results were validated and fine-tuned using ground truth data 
and MODIS-derived ice surface temperature. 

°σ
°σ

°σ

5.7.1 One-dimensional thermodynamic snow/ice model (HIGHTSI) 
The full model descriptions for a 1-D high-resolution thermodynamic snow/ice model 
(HIGHTSI) are given in (Launiainen and Cheng 1998, Cheng et al. 2003). The model is 
targeted for process studies, e.g., to resolve the evolution of snow/ice temperature profile and 
snow/ice thickness. Integration of the partial-differential heat conduction equation of snow 
and ice layers serves as the numerical core of the model. The surface temperature is solved 
from a detailed surface heat/mass balance equation, which defines the upper boundary 
conditions for the model, and is also used to determine if surface melting occurs. The solar 
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radiation penetrating through the surface is parameterized, making the model capable to 
quantitatively calculate sub-surface melting (Launiainen and Cheng 1998, Cheng et al. 2003). 
The surface albedo is parameterized according to (Pirazzini et al. 2006). Atmospheric 
stratification is taken into account in the calculation of the turbulent air-ice heat and moisture 
fluxes. A heat and mass balance at the ice bottom serves as the lower boundary condition of 
the model. Snow-to-ice transformation via both superimposed ice and snow-ice formation is 
taken into account. The evolution of snow properties, such as snow density and heat 
conductivity, are modeled. A high spatial resolution of the model (e.g., 20 layers in the snow 
and 20 in the ice) ensures that the response of the snow/ice temperature regime to the 
absorption of solar radiation near the surface is correctly resolved. The model has been 
successfully validated against observations in the Baltic Sea (Launiainen and Cheng 1998, 
Cheng et al. 2003, Cheng et al. 2001). 

The following HIGHTSI output variables are used for the interpretation of the  time series: 
snow thickness , superimposed ice thickness , snow and ice surface temperatures  and 

. Currently, the HIGHTSI model does not estimate the vertical profile of the volumetric 
wetness of snow. During the on-set of melting, the melt water is assumed to percolate without 
delay to the snow-ice interface. Depending on the local heat flux divergence, the melt water is 
then partly or entirely transformed into superimposed ice. Nevertheless, weather history and 
snow melting events are used to estimate whether snow cover is dry (volumetric wetness 0%), 
moist (wetness < 2%) or wet (wetness > 2%) (see Section 5.2 for details). 

°σ

sh sih sT

iT

5.7.2 Test sites and data sets 
The ENVISAT IMP and WSM data sets for the study are presented in Table 5.4. Using an 
ENVISAT IMP SAR image acquired on February 10, 2004, five test sites on landfast level ice 
were selected near Marjaniemi weather station on Hailuoto Island in the Bay of Bothnia, see 
Figure 5.19. The size of these test sites is 510 by 510 m. The distance from test sites 1-5 to 
Marjaniemi ranges from 2 to 6 km. Two test sites were selected at a FIMR’s weekly ice and 
snow thickness measurement station south of Hailuoto Island, 13 km from Marjaniemi. 

An average  time series was constructed in the following way: (1) Mean  values in each 
SAR image for the seven test sites were calculated. The size of the test sites in the IMP and 
WSM images was 17 by 17 and 3 by 3 pixels, respectively. (2) The 

°σ °σ

°σ  time series for the 
seven test sites were averaged together. The average °σ  time series is represented by the 
mean and std of  and the average °σ 0θ  at each sampling time. This average time series is 
considered better for analysis than the individual seven time series, as the test sites were 
selected visually without any ground truth and, also, the HIGHTSI results are representative 
in a scale comparable to the test region, without a possibility to resolve spatial differences 
between the individual test sites. The std of °σ  is from 0.28 to 1.28 dB indicating that the ice 
conditions at the test sites were not exactly the same. The effect of fading in the time series is 
negligible. The mean °σ  values are at least 2 dB above the noise equivalent . °σ

Besides variation in sea ice properties, variation of 0θ  causes changes in the average  time 
series. Under dry and wet snow conditions, level ice 

°σ
°σ  decreases on average 0.25 dB/1º and 

0.34 dB/1º with increasing , respectively [P3]. In the data set used here, the variation 
induced by  can be up 7 dB. To diminish the incidence angle effect, the  time series was 
first divided into three sub-series, where the 

0θ
°σ0θ

°σ  values are from two or three adjacent 
ENVISAT IMP swath types combined with WSM °σ  values, which are within the  ranges 
of the sub-series, see Table 5.11. Next, the 

0θ
°σ  values in the sub-series were scaled to average 

’s of the series using only the correction factor for dry snow condition. Small  range of 
the three sub-series allows the use of single correction factor with little error (max error only 

0θ 0θ
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around 0.5 dB under wet snow condition). This way it is possible to find out  changes due 
to the changing sea ice properties. The statistical character of the 

°σ
0θ  scaling procedure was 

taken into account by increasing the imagewise std of °σ  values by 0.16 dB in the subseries 1 
and by 0.20 dB in the subseries 2 and 3, when identifying statistically significant changes 
between the consecutive  values. The three different average °σ °σ  time series are shown in 
Figure 5.20. 

 

 
Figure 5.19 Test sites and ground truth data locations; the test sites were selected over 
landfast level ice near Hailuoto Island in the Bay of Bothnia. Symbols are: ‘ ’ = test site, ‘ ’ 
= weather station, ‘ ’ = FIMR’s weekly ice and snow thickness measurement station, ‘ ’ = 
surface temperature location in the MODIS data. The SAR image was rectified to the Finnish 
Uniform Coordinate System (northing and easting in kilometers). 

Table 5.11 Average ENVISAT SAR derived time series of °σ  for landfast level ice near 
Hailuoto Island in the Bay of Bothnia. 

IMP 
Swaths Start End IMP 

Samples
WSM 

Samples
Total 

Samples
Mean 

Inc. AngleInc. Angle 

IS1, IS2 4 Feb 30 Mar 7 1 8 16.3 - 23.6 19.5 

IS2, IS3, IS4 4 Feb 27 Mar 9 3 12 23.5 - 34.1 29.2 

IS5, IS6, IS7 3 Feb 7 Apr 7 4 11 35.9 - 44.9 40.2 
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°σFigure 5.20 Average ENVISAT IMP and WSM SAR  time series for landfast level ice 

near Hailuoto Island. The time series were obtained using °σ  data for seven test sites. The 
three different time series are denoted with the IMP swath types used in their construction. 
Vertical errorbars indicate ±1 standard deviation variation of °σ . Numbers (1)-(5) indicate the 
five different main phases in the time series and letters (a)-(e) are the parts selected for 
detailed qualitative analysis. 

The turbulent air-snow fluxes in the HIGHTSI model were calculated on the basis of wind 
speed, air temperature, and relative humidity observations at the FMI Hailuoto Marjaniemi 
weather station. The short-range (3-12 h) forecasts of the European Centre for Medium-Range 
Weather Forecasts (ECMWF) were used for the downwelling solar shortwave and thermal 
longwave radiative fluxes at the snow surface. The Hailuoto Ojakylä daily observations on 
precipitation provided the source term for the snow depth; in case of missing data, the 
ECMWF precipitation forecasts were applied. All the forcing data were linearly interpolated 
to the model time step of 1 h. 

MODIS based snow/ice surface temperature was calculated using the procedure described in 
(Hall et al. 2004) under clear-sky conditions. Totally 19 daytime and 10 nighttime 
temperature estimates for the test site 2 (Figure 5.19) were obtained for the study period. 

5.7.3 HIGHTSI results 
The correlation coefficient between the HIGHTSI and MODIS results for  is 0.90, and 
there are only six cases with the absolute error of HIGHTSI exceeding 5 K. These cases 
occurred in cold conditions mostly with a low wind speed. In such conditions, the modeling 
of surface temperature is liable to errors, because the theoretical basis for the parameterization 
of the turbulent surface fluxes may break down (Mahrt 1999). The HIGHTSI estimation for 

 is clearly better than the ECMWF one, which include 14 cases with the absolute error 
exceeding 5 K. This demonstrates a benefit that HIGHTSI can bring compared to ECMWF 
for the interpretation of the SAR data. 
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A comparison of the modeled snow thickness and conceptual snow temperature regimes 
(isothermal with  = 0 ºC in the white areas) is shown in Figure 5.21. The FIMR weekly (on 
sea ice) and FMI daily (on land) snow thickness measurements are used as references. The 
agreement between the model results and FIMR observations varies in time. It is reasonably 
good during the early continuous snow accumulation (before day number (DN) 40) and the 
later event of snow melt after DN 90. From DN 70 to 80, the melting trend of modeled results 
was coherent with the observations, but large differences are apparent between DN 48 and 62. 
However, the FIMR weekly data have poor temporal resolution and it is affected by wind 
drift, which can generate large spatial variations reducing its representativeness. Although the 
snow cover was much thicker at land than on the sea ice, the observed and modeled temporal 
evolution agreed well. In summary, HIGHTSI can well catch up the snow surface heat 
balance and melt events. 
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Figure 5.21 (a) Time series of modeled snow thickness and active melt regions (white areas) 
in the snow pack. The FIMR weekly snow thickness observations at the test site 6 (Figure 
5.19) are marked by circles, and the thicker line indicates the snow thickness measured on 
land at FMI Hailuoto Ojakylä station. (b) The modeled total ice thickness (solid line) and 
FIMR weekly measurement (dots). 

The modeled total ice thickness compares well with the FIMR weekly measurements (Figure 
5.21). During the whole period, there was about 5 cm of ice growth to the ice bottom. The rest 
of the growth was due to superimposed ice. The small discrepancies between observed and 
modeled results maybe due to errors in the heat balance at the ice bottom. 

5.7.4 General evolution of  °σ
In the study period, from February 3 to April 7, 2004, with the help of HIGHTSI results, five 
different main phases (phases 1-5) were identified in the three °σ  time series, denoted here as 
ts12, ts234 and ts567 (see Figure 5.20). The phases are discussed in detail in [P5]. During the 
entire two-month study period, there was an increasing °σ °σ trend. The range of the mean  

 99



°σvalues was up to 7 dB, indicating a very large variation for level ice . As the ice season 
proceeded with multiple melt-refreeze cycles, there were very likely increases in 
superimposed ice thickness, snow pack stratification, snow grain size, density and surface 
roughness. This yielded an increase in snow volume and surface scattering and also a rougher 
snow-ice interface enhancing the ice surface scattering. In the rather limited  data set, the 
variation of  was strong on two occasions, DNs 48-60 and 79 onwards in response to the 
change of ice conditions. During the general melting period, DN 74 onwards, the standard 
deviations of  were always rather large, indicating large variations in the surface conditions 
between the seven test sites, perhaps due to spatial variations in snow melt. 

°σ
°σ

°σ

As the winter weather conditions in the Baltic Sea are highly variable, both during a single ice 
season and between consecutive years, it is not possible to establish a typical level ice °σ  
trend through the ice season. In this data set °σ  increased on a seasonal scale with increasing 
shortwave energy flux, as in (Barber et al. 1995). However, the short-time oscillation of net 
shortwave energy did not produce any detectable °σ  oscillation. In the Baltic Sea, it is 
reasonable to study what kind of  changes are typically observed when weather changes, 
e.g., from cold to warm, and how the ice season history is typically reflected in the changes. 

°σ

5.7.5  time series vs. HIGHTSI analysis °σ
°σThe effect of a value of a HIGHTSI variable on the value of  depends on the previous 

states of snow and ice surface layer. Hence, a proper statistical analysis would require the use 
of some stochastic process with a memory property, e.g., an autoregressive process. However, 
due to the sparseness and limited amount of the °σ  data, only a linear relationship between a 
modeled variable and the  values was tested using correlation analysis. The 90 % 
confidence intervals for the correlation coefficient were constructed using the nonparametric 
bootstrap method (Davidson and Hinkley 1997). For all variables tested at least one of the 
three confidence intervals, one interval for each time series, covered the zero value for the 
correlation coefficient. Hence, no single HIGHTSI variable explained a statistically 
significant amount of the observed 

°σ

°σ  variation when a linear dependence model was 
assumed. It is noted that the three different time series exhibited slightly different  patterns, 
but it is impossible to determine if these differences are real or just due to the sparse 
sampling. 

°σ

°σFor studying qualitatively the relationships between the  changes and HIGHTSI variables, 
significant changes in the  time series were first identified using the Welch t-test (Welch 
1938). Based on the test results five intensively sampled periods were chosen, marked as 
periods (a)-(e) in Figure 5.20. The most interesting 

°σ

°σ  behavior occurred in periods (a)-(c), 
between DN 48.89-59.45. During this time period the SAR data coverage was the most 
frequent. As an example of the  vs. HIGHTSI qualitatively analysis, periods (a) and (b) are 
discussed below. In periods (d) and (e), the variables produced by the HIGHTSI model cannot 
be directly linked to the observed 

°σ

°σ  changes. Detailed ground truth, combined with 
theoretical  modeling, would have been needed. It is noted that the following figures of °σ °σ  
change are not absolute values due to the incidence angle scaling. 

°σIn period (a) (part of ts12), from DNs 48.89 to 51.90,  first increased by 4.3 dB. HIGHTSI 
results suggested that the 13 cm thick snow cover on DN 48.89 was dry.  increased from    
-14.2 to 0.0 ºC and  from -1.5 to -0.7 ºC.  was 0 ºC during a period of 15 hours before 
DN 51.90, i.e., snow was melting and snow thickness  decreased by 1.4 cm. On DN 51.90, 
the thin snow cover was likely moist or even wet. On DN 48.89 backscattering from snow 
covered level ice was very likely dominated by ice surface scattering. The large increase of 

 from DN 48.89 to 51.90 could be due to a strong combination of moist snow surface and 
volume scattering and ice surface scattering, i.e., the thin snow pack was not yet so wet that it 

sT

iT sT

sh

°σ

 100



°σtotally prevented scattering from the ice surface. The contribution of snow cover on  is 
reflected in the large decrease of the SAR image contrast in deformed ice areas (observed 
visually) from DNs 48.89 to 51.90, see Figure 5.22. An increase of snow wetness reduces °σ  
difference between level ice and deformed ice leading to a decrease in contrast. 

From DNs 51.90 to 52.46,  decreased by 1.7 dB. On DN 52.46, there was actual sub-
surface melting going on in the snow pack, while DN 51.90 represented night conditions with 
refreezing of the melt water from the previous day. Hence, the snow pack was much more wet 
on DN 52.46, and snow surface and volume scattering, therefore, strongly dominated. 
Increased snow absorption very likely decreased ice surface scattering to an insignificant 
level. This could explain the observed decrease in 

°σ

°σ . The image contrast is worse on DN 
52.46 than on 51.90 (Figure 5.22). During DNs 52.46-55.47, °σ  increased by 0.9 dB. 
Weather got colder with  decreasing to -12.6 ºC and  to -2.0 ºC. There was no change in 

, but  increased by 1.2 cm. Snow wetness most probably decreased to zero and, thus, ice 
surface scattering dominated. The slight increase of 

sT iT

sh sih
°σ  from wet snow condition on DN 

52.46 to dry snow condition on DN 55.47 suggests that ice surface was now rougher due to 
the formation of superimposed ice than wet snow surface on DN 52.46. The contrast is clearly 
better on DN 55.47 than on 52.46 (Figure 5.22). 

In period (b) (part of ts234),  increased by 3.8 dB from DNs 49.46 to 52.46. On DN 49.46, 
snow cover was dry (  -14.4ºC and  -1.8ºC) and then its properties were changing like in 
period (a), resulting in wet snow cover on DN 52.46. This indicates that wet snow surface and 
volume scattering on DN 52.46 was larger than ice surface scattering under dry condition on 
DN 49.46. During 5.5 days, DNs 52.46-57.90, 

°σ
sT iT

°σ  decreased by 1.5 dB.  and  went 
through a decreasing-increasing cycle ending at -6.2 and -1.3 ºC, respectively.  increased 
by 2.1 cm due to precipitation on DNs 56 and 57, and  increased by 1.8 cm due to 
refreezing during cold weather. The snow cover changed from wet to dry. The dominating ice 
surface scattering on DN 57.90 was larger than ice surface scattering on DN 49.46, possibly 
due to an increase in ice surface roughness produced by an increase of . In period (a), an 

 increase was observed when snow cover changed from wet to dry (DNs 52.46-55.47), but 
here,  decreased during the same snow cover change (DNs 52.46-57.90). The reason for 
this discrepancy is uncertain; only clear differences between these two incidents are an 
increase of snow thickness on DNs 56-57, smaller temperatures on DN 57.90, and 10-degrees 
difference in the incidence angle. This discrepancy demonstrates complexity of  changes as 
a function of sea ice condition. 
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°σ

°σ

°σ

5.7.6 Comparison with previous results 
In a previous Baltic Sea ice study (Lundin 2001), it was observed that  decreases with 
increasing air temperature under cold conditions (air temperature < 1 ºC), but this study did 
not take into account changes in snow and ice thickness and temperature due to the changing 
weather conditions and, notably,  data were not used in the sampling time order it was 
acquired. 

°σ

°σ

For the Artic Sea FY it has been observed that °σ  increases with increasing snow wetness 
when wetness is within the pendular regime (phenomena at melt onset) (Barber et al. 2001). 
This  increase was also observed here for landfast level ice with a thin snow cover. For the 
Artic FY, the increase is likely due to the large brine-wetted snow grains in the snow basal 
layer and wet-snow surface scattering (Barber et al. 2001). In the case of the Baltic Sea ice, 
the basal snow layer is almost non-saline, and the 

°σ

°σ  increase with increasing wetness is 
possibly due to the strong combination of moist/wet snow surface and volume scattering and 
ice surface scattering. 
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Figure 5.22 ENVISAT IMP HH-polarization SAR images acquired over the study area on  
(a) DN 48.89 (February 17) with incidence angle 0θ  of 16.4º, (b) DN 51.90 (February 20) 
with  of 21.2º, (c) DN 52.46 (February 21) with 0θ 0θ  of 23.5º, and (d) DN 55.47 (February 
24) with  of 18.8º. The SAR series demonstrates the effect of snow wetness (increases 
from (a) to (c) and then decreases from (c) to (d)) to the image contrast. , in the images, is 
expressed in dB-scale from -20 to -5 dB (black to white). 

0θ
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5.7.7 Significance of the results for SAR image interpretation 
Generally, the HIGHTSI output variables greatly helped to interpret the behavior of the Baltic 
Sea level ice  with changing ice and weather conditions. There were some cases where 
detailed ground truth combined with theoretical 

°σ
°σ  modeling, would have been needed for 

interpretation of the  trends. Quantitative analysis between the °σ °σ  trends and the HIGHTSI 
variables indicated that no single HIGHTSI variable explained a statistically significant 
amount of the observed  variation when a linear dependence model was assumed. The 
importance of the snow metamorphic state for the 

°σ
°σ  behavior was emphasized in (Barber et 

al. 2001). Here, the state of the snow layer could not be extracted from any single HIGHTSI 
variable or variable combination. It was hypothetically determined by examining the 
evolution of snow layer over a longer time period. 

°σThere is a large variation of level ice  with changing weather conditions. It is likely linked 
to snow cover wetness, formation of superimposed ice, which changes ice surface roughness, 
snow stratification due to snow melt-freeze cycles, and snow accumulation and melting, 
which change snow surface roughness. The °σ  variation complicates visual and automatic 
classification of the SAR images as, for example, under dry snow condition, the level ice °σ  
is smaller than under wet snow condition, and increasing snow cover wetness decreases 
contrast between level ice and deformed ice. Thus, for good automatic classification, the 
algorithms must be tuned for different ice and snow conditions. The HIGHTSI model could 
act as an indicator of various ice and snow conditions and, combined with SAR data, provide 
an empirical database describing typical relationships between °σ  and changing sea ice 
properties for algorithm development. 
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6 Investigation of Passive Microwave Signatures of the 
Baltic Sea Ice 

Spaceborne radiometer data acquired with the SSM/I and AMSR-E instruments is not 
currently used for operational monitoring of the Baltic Sea ice. The main reason for this is the 
coarse spatial resolution of the data, e.g. in the AMSR-E data the resolution is from 56 to    
5.4 km, and the coastline contamination effect (sea ice extent has to rise above a “noise” level 
in order to be distinguishable from the coastline effect) (Grandell et al. 1996). However, ice 
concentration maps based on radiometer data could help to validate classification algorithms 
of the SAR images by providing an independent data set on sea ice conditions. Additionally, 
time series of ice concentration maps, showing temporal evolution of ice extent, could be used 
in geophysical studies. Grandell and Hallikainen (1994) and Grandell et al. (1996) have 
showed that SSM/I data and the NASA Team algorithm (Cavalieri et al. 1984, 1991), after 
modification of the tie points, provide an estimation of the Baltic Sea ice concentration, but 
further research is still needed before above mentioned uses of the radiometer data are fully 
feasible. It is possible that new algorithms especially suited for the Baltic Sea ice conditions 
are needed. 

In order to support development of ice concentration algorithms for the spaceborne 
radiometer data, the following investigations were conducted in [P6] using airborne 
radiometer data: (1) behavior of the brightness temperature ( ) and polarization ratio ( ) 
as a function of ice type and frequency, (2) correlation between different radiometer channels 
and the number of main dimensions for multichannel datasets, (3) discrimination of open 
water leads from sea ice and classification of various ice types using various combinations of 
radiometer channels or  and spectral gradient (GR ) ratios, and (4) suitability of the SSM/I 
data with the NASA Team and Bootstrap ice concentration algorithms for mapping the Baltic 
Sea ice. The effect of snow cover wetness on most of these tasks was also investigated. 
Below, the HUT radiometer system and the data sets are first described, followed by 
discussion of the main results of tasks (1)-(4). 

BT PR

PR

6.1 HUTRAD Radiometer and Data Sets 
Laboratory of Space Technology of Helsinki University of Technology (TKK) measured  
signatures of various Baltic Sea ice types and open water leads in March, April and May 1995 
during the EMAC-95 campaign and in March 1997 during the IMSI campaign with the 
airborne non-imaging HUTRAD microwave radiometer system. 

BT

In the EMAC-95 campaign, HUTRAD consisted of the following eight channels: 6.8 GHz 
(H- and V-polarization), 10.65 GHz (H and V), 18.7 GHz (H and V), 24 GHz (V) and 34 GHz 
(V). In early 1996 the 24 and 34 GHz radiometers were replaced by a new non-imaging high-
frequency subsystem, which has 23.8, 36.5 and 94 GHz receivers with H- and V-polarization. 
All radiometers have been designed and constructed by Laboratory of Space Technology of 
TKK. The radiometers were mounted onboard a twin-engine Short SC-7 Skyvan aircraft 
owned by TKK. The radiometers looked backwards along the flight track. The nominal 
incidence angle of all radiometers was 50 degrees, but the true incidence angle depended 
slightly on the pitch angle of the aircraft and was between 46 and 50 degrees. The main 
technical characteristics of HUTRAD are presented in Table 6.1. The radiometer 
measurements were conducted at an altitude of 300 m and the flight speed was 57 m/s. The 
target was recorded with a video camera, and the DGPS-coordinates of the flight track were 
saved with the radiometer data. All radiometers were calibrated before and after each 
measurement flight with a liquid nitrogen-cooled cold calibration target and a hot calibration 
target in ambient temperature. Due to temporary spatial limitations in the aircraft in during the 
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EMAC-95 campaign, the channels 6.8 and 10.65 GHz could not be used simultaneously on 
board the aircraft. 

Table 6.1 Technical characteristics of the HUTRAD non-imaging radiometers (Kurvonen and 
Hallikainen 1996, Hallikainen et al. 1998). 

1) 1) 6.8 
GHz 

10.65
GHz 

18.7 
GHz 

23.8 
GHz 

36.5 
GHz 

94 
GHz 

24  
GHz 

34  
GHz 

Radiometer type Dicke Dicke Dicke Dicke Dicke Total 
power 

Dicke Dicke 

Polarization H & V H & V H & V H & V H & V H & V V V 

Incidence angle 50° 50° 50° 50° 50° 50° 50° 50° 

Bandwidth (MHz) 310 120 750 750 400 2000 650 650 

Integration time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.2 

Sensitivity (K) 0.25 0.6 0.35 0.20 0.30 0.50 1.6 1.2 

Antenna 3 dB 5.0° 3.2° 3.7° 4.0° 4.0° 3.0° 5.4° 4.2° 
beamwidth 

Footprint (m), 41 by 
64 

26 by 
41 

30 by 
47 

33 by 
51 

33 by 
51 

24 by 
38 

44 by 
69 

34 by 
53 altitude 300 m 

1)  Not in use since late 1995. 

The radiometer data sets are shown in Table 6.2. Using video imagery the data were assigned 
to OW and seven ice types, see Table 5.5. The minimum length of a data section for a surface 
type was chosen to be 10 s which corresponds approximately to a distance of 550 m. 68% of 
the EMAC-95 data were successfully assigned into different surface types. For the IMSI-97 
datasets measured on March 20 and 23, 1997, the corresponding figures are 59% and 77%, 
respectively. The ground truth data provided further classification into dry, moist and wet 
snow classes. 

Based on the quality control of the radiometer data, the IMSI datasets at 6.8, 10.65 and         
94 GHz were rejected from the analysis. This was due to a failure in the temperature control 
of the receivers, then still in the phase of undergoing flight tests. Also part of the 18.7 GHz 
data measured on March 20, 1997, had to be rejected for the same reason. 

The measured  values were not converted to emissivities due to the lack of the surface 
temperature data. The  data used here also contain the reflected down-welling apparent 
atmospheric : 

BT

BT

BT

( )),(1),( 0,, θ−=θ ↓ feTfT atmosBatmosB , (6.1)

where  is the down-welling apparent atmospheric ,  is surface emissivity, and  

is frequency. A statistical model for  in Finland is (Pulliainen et al. 1993): 

eBT↓atmosBT , f

↓atmosBT ,

( )tTtT satmosB −α= ↓↓ 1)(, , (6.2)

where  is the approximate atmospheric profile factor for determining the effective 
downwelling temperature ,  is surface temperature and  is atmospheric 
transmissivity. At the used frequencies the effect of the atmosphere is the largest at 23.8 GHz; 

↓α

sT tsT↓α
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for example, when  has extreme values of 0.74 and 0.92 which it exceeds 95% and 15% of 
time, respectively, and  is 273 K, then  is 68 K and 21 K, respectively. For the 
Baltic Sea ice types mean emissivities are not available. According to Eppler et al. (1992) 
typical emissivities for Arctic Sea dark nilas at 37 GHz V- and H-polarization are 0.81 and 
0.77 (no data at 23.8 GHz were given). The corresponding values for Arctic first-year ice are 
0.96 and 0.91. These emissivities suggest that the contribution of  in the measured  
data is nearly five times higher for very young Baltic Sea ice types than for deformed ice 
types, but the absolute value of  is nevertheless mostly less than 16 K. 

t
sT atmosBT ,

BTatmosBT ,

atmosBT ,

Table 6.2 Airborne microwave radiometer measurements of the Baltic Sea ice. 
Air

temp.
(°C) 

Surface
types 

Snow cover 
characteristics 

Snow 
class 

Campaign 
and date 

Radiometer 
data (GHz) Measurements 

Mean thickness < 10 cm. 
Snow cover consisted of 
refrozen snow and light 
new snow. 

Four 9 by 9 km test 
sites in the Bay of 
Bothnia.  

OW, NI,
RLI, HDI,

FBI 

EMAC-95 
22 Mar 1995 

6.8, 10.65, 
18.7: V and H

Dry 
snow -3.8 

Mean thickness 10-40 cm. 
Old snow at the bottom, 
new snow in the middle 
and 2 cm thick layer of 
frost snow on the top. 

6.8, 10.65, 
18.7: V and H

24 V 

Four 9 by 9 km test 
sites in the Bay of 
Bothnia. 

OW, RLI,
SDI, HDI,

FBI 

Moist 
snow 

EMAC-95 
5 Apr 1995 -4.5 

6.8, 10.65, 
18.7: V and H

24, 34 V 

Two 9 by 9 km test 
sites in the Bay of 
Bothnia. 

EMAC-95 
3 May 1995 

OW, RLI,
HDI 

Thickness 0-10 cm. Snow 
very coarse grained. 

Wet 
snow +0.6 

LI covered only by a very 
thin loose new snow layer. 
Some snow on the ridges 
and in rough ice areas. 

OW, NI,
SLI, RLI,
SDI, HDI,

FBI 

Two lines in the Bay 
of Bothnia. Partial dry

snow cover
IMSI-97 

20 Mar 1997 
18.7, 23.8, 

36.5: V and H -5.5 
Total length 490 km. 

LI covered by few 
millimeters of loose snow. 
Snow packed to the ridged 
and rough ice areas.  

Two lines in the Bay 
of Bothnia. 

NI, SLI, 
RLI, SDI, 
HDI, FBI

Partial dry
snow cover

IMSI-97 
23 Mar 1997 

18.7, 23.8, 
36.5: V and H -9.0 

Total length 200 km. 

 

6.2 Polarization Ratio Signatures 
In [P6] mean and 90% confidence interval statistics of  and polarization ratio : BT PR

),(),(
),(),(

HfTVfT
HfTVfTPR

BB

BB

+
−

=  (6.3)

were studied as a function of frequency and ice deformation, but as only  statistics are 
important for the NASA Team type algorithms, only the results for  are discussed here. 
Statistics of  data for 18.7 and 36.5 GHz V-polarization channels used in the Bootstrap ice 
concentration algorithm (Comiso 1995, Comiso et al. 1997) are discussed in Chapter 6.4. 

PR
PR

BT

The mean and 90% confidence intervals of  values for various ice types under three 
different snow conditions are presented in Figure 6.1. Under partial dry snow cover and dry 
snow cover conditions the mean  decreases (min 0.03 and max 0.10) at all frequencies 
with increasing ice deformation. Under moist snow condition  also decreases (from RLI to 
FBI), but at maximum only 0.02. In the NASA Team algorithm, the 19.35 GHz  for the 
first-year ice and multiyear ice tie point is 0.031 and 0.045, respectively (Cavalieri et al. 

PR

PR
PR

PR
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1991). The first-year ice tie point for the Baltic Sea is 0.056 (Grandell and Hallikainen 1994). 
In the NASA Team algorithm modified for mapping thin ice in the Arctic seasonal sea ice 
zones, the average  at 19.35 GHz for new ice and young ice is 0.150 and 0.08, 
respectively (Cavalieri 1994). According to these figures a change of 0.01 in the average  
can be considered significant. 

PR
PR

PR  decreases (max 0.04) with increasing frequency under partial dry snow condition, where 
the frequency range of the polarization ratio data is from 18.7 to 36.5 GHz. Under other snow 
cover conditions monotonous frequency behavior of  was not observed. In these cases, 

 is typically the largest at 10.65 GHz in the frequency range from 6.8 to 18.7 GHz. The 
small amount of dry, moist and wet snow data may be reflected in the results. 

PR
PR

The observed behavior of  is consistent with the sea ice emission model by Fung (1994); 
when surface roughness, i.e. ice deformation, increases V-polarized  stays roughly equal 
whereas H-polarized  increases considerably and, thus,  decreases. The effect of 
surface roughness increases with increasing frequency.  also decreases with decreasing ice 
surface  which is a function of ice salinity. For NI 

PR
BT

BT PR
PR

rε rε  is larger than for older ice types. An 
increase of snow optical depth, either by increase of frequency, snow thickness, scatterer (ice 
crystals) size or volume fraction, depolarize more the sea ice emission leading to a decrease in 

 (Fung 1994). Empirical  data sets for the Artic Sea ice have also shown that  
decreases with increasingly thick ice types (Cavalieri 1994). This decrease is due to changes 
in ice surface roughness and salinity, and also likely due to accumulation of snow cover. 

PR PR PR

6.3 Discrimination of Open Water and Various Ice types 
Before studying the discrimination between various surface types in the radiometer data sets, 
correlation and principal component analysis (PCA) were carried out in order to find out any 
dependencies between the radiometer channels and the number of main dimensions of the 
multichannel datasets. If two channels are highly correlated, they are not independent and are 
hence redundant. The number of the main dimensions plus one is the amount of sea surface 
types whose fractions in every spaceborne radiometer data pixel can be unambiguously 
determined (Rothrock et al. 1988). PCA was conducted using unsupervised method because 
of its ability to describe all forms of variance in the data; not only are the differences between 
the mean frequency spectra of surface types taken into account, but so are the variances in 
their signatures (Wensnahan et al. 1993). Here the dimensionality is defined as the number of 
principal components that contain at least 90% of the variance of the dataset. The correlation 
matrices were calculated using all radiometer data, whereas PCA was conducted using only 
the data classified to surface types. The dimensionality was not calculated for the wet snow 
dataset due to the small number of surface types, only three. 

PCA indicated that the number of main dimensions for partial, dry snow and moist snow 
datasets is only one. The first principal component contained from 96.6% to 98.8% of the 
total variance. Correlations between different channels were high, from +0.86 to +1.0. 
Therefore, in the experiments of surface type discrimination it is meaningful to use at 
maximum a combination of two channels or ratios ( , ) at a time. The result also 
suggests that only concentration of two Baltic Sea surface types, open water and sea ice in 
general (all ice types together), can be resolved from the spaceborne radiometer data in the 
frequency range from 6.8 to 36.5 GHz. However, more airborne radiometer data and also 
spaceborne radiometer data are needed to confirm this. 

GRPR
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Figure 6.1 Mean and 90% confidence interval of polarization ratio for various ice types using 
(a) the IMSI-97 partial dry snow cover data, (b) the EMAC-95 dry snow cover data, and (c) 
the EMAC-95 moist snow cover data. 
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Figure 6.1 Continues. 

Open water leads can be distinguished from all sea ice types using only single channel data in 
the frequency range 6.8 - 36.5 GHz, either V- or H-polarization, regardless of the wetness of 
snow cover. This is due to the large  contrast between water and ice. The calm and foam-
free sea surface increased the contrast. No open water areas outside the ice pack, where the 
sea surface can be very rough, were measured. 

BT

The best variables for discriminating various ice types under different snow conditions are 
shown in Table 6.3. The gradient ratio  there is defined as: GR

GR
T f P T f P
T f P T f P

B B

B B
=

−
+

( , ) ( , )
( , ) ( , )

2 1

2 1
, (6.4)

where  and  are frequencies ( < ) and 1f 2f 1f 2f P  is either H- or V-polarization. The best ice 
type classification result was achieved under dry snow condition, see Figure 6.3. The mean 

 is clearly negative for RLI most likely due to the large amount of volume scattering in 
thick snow cover, which separates it from HDI. Under moist and partial dry snow cover 
conditions (Figure 6.2), the unambiguous classification of all ice types is not possible. Under 
wet snow condition only two ice types were measured and they were discriminated reliably. 
Principal components calculated from different combinations of  channels or ratios did not 
yield better results than those in Table 6.3. Only in the partial dry snow cover case the data 
amount is so large that the classification results can be considered statistically very reliable. 

GR

BT

The comparison of the classification results to those in (Kurvonen and Hallikainen 1996) is 
not meaningful as the high-frequency 94 GHz data which provided good results there was not 
available here and, besides, the number of different ice types in their study was quite low. 
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Table 6.3 Classification of the Baltic Sea ice types using airborne radiometer data. 
Snow 
Class 

Data 
Source 

No of 
Ice Types 

Radiometer 
Data [GHz] 

Best Algorithm 
[GHz] 

Classification Results 

Partial dry 
snow cover 

IMSI-97 6 18.7, 23.8, 
36.5 

1) PR 18.7 and 
GR 18.7/36.5 V-pol 

Ice types are not distinguished.

Dry snow 
cover 

EMAC-95
22 March 

4 6.8, 10.65, 
18.7 

PR 10.65 and 
GR 10.65/18.7 V-pol 

Ice types are distinguished 
reliably. 

Moist snow 
cover 

EMAC-95
5 April 

4 6.8, 10.65, 
18.7, 24 V 

1) PR 18.7 and 
GR 18.7/6.8 V-pol 

Frozen brash ice distinguished 
from other ice types. No data 
for new ice was available. 

1)Wet snow 
cover 

EMAC-95
3 May 

2 6.8, 10.65, 
18.7, 24 V,

34 V 

 PR 6.8 and 
GR 6.8/34 V-pol 

Only rough level ice and 
highly deformed ice were 
measured. These ice types are 
distinguished reliably. 

1) Additionally, several different combinations of polarization and gradient ratios produced practically 
equivalent classification. 

Even though the ice types are discriminated in the fine resolution airborne radiometer data, 
the determination of the ice type concentrations from the coarse resolution spaceborne data is 
most likely not possible, because the mean signatures for various ice types are very close to 
each other. This conclusion is supported by the results of PCA analysis. 
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Figure 6.2 Polarization ratio at 18.7 GHz versus V-polarization gradient ratio between 
frequencies 36.5 and 18.7 GHz for various ice types using the IMSI-97 partial dry snow cover 
data. The data were averaged to a resolution of 200 m. The ellipses represent 90% confidence 
intervals. 
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Figure 6.3 Polarization ratio at 10.65 GHz versus V-polarization gradient ratio between 18.7 
and 10.65 GHz for various ice types using the EMAC-95 dry snow data. The data were 
averaged to a resolution of 100 m. The ellipses represent 90% confidence intervals. 

6.4 Applicability of the NASA Team and Bootstrap Ice 
Concentration Algorithms 

The NASA Team algorithm is described in Chapter 4.9. The Bootstrap algorithm (Comiso 
1995, Comiso et al. 1997) for the Arctic seasonal ice regions where first-year ice dominates 
employs 19.35 and 37.0 GHz V-polarization  channels for determination of the total sea 
ice concentration. The algorithm uses the fact that in scatter plots 19V vs. 37V open water 
points tend to cluster around a point and different regions of the Arctic tend to form separate 
clusters along a line of a given slope. The basis of the algorithm in shown Figure 6.4(a). A 
data point at location I along line AD, which passes through the clusters of various ice types, 
is assumed to represent 100% ice cover of the same ice type as at point B. Point O is close to 
the lowest  for open water. Data points along line OI represent different concentrations of 
this ice type. The line AD and point O in Figure 6.4(a) were plotted using values for the 
Arctic seasonal ice zones (Comiso et al. 1997). They are empirical parameters similar to the 
tie points of the NASA Team algorithm. 

BT

BT

Applicability of the SSM/I data with the NASA Team and Bootstrap algorithms for the Baltic 
Sea ice mapping was evaluated using the partial snow cover data. This is the only data set that 
has channels equivalent to those used in the algorithms. The data were averaged to a spatial 
resolution of 100 m. All open water measurements were conducted at an incidence angle of 
46º whereas measurements for various ice types were conducted at angles of 46º and 50º. 

A scatter plot of 36.5 GHz V-polarized  versus 18.7 GHz V-polarized  using data 
classified to surface types is shown in Figure 6.4(a). The signatures of various ice types are 
not grouped to distinct clusters; rather, they form a single large cluster. The large scatter of 

 values is very likely due to fine spatial resolution, 100 m, of the airborne radiometer data. 
At the resolution of the gridded SSM/I data, 25 km, the fine scale emissivity variations 

BT BT

BT
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average out, and the  signatures of the same ice type are likely very close to each other. To 
see if this is the case, the resolution of the SSM/I data was simulated by representing each 
surface type with the mean and standard deviation of , see Figure 6.4(b). The mean  
values of various ice types are now very close to each other; the ranges of the means are only 
11 and 20 K at 18.7 and 36.5 GHz, respectively. The standard deviations are also very small, 
below 12 K. This is in agreement with the formulation of the Bootstrap algorithm where it is 
assumed that different regions of the Arctic tend to form separate clusters along a line AD, 
and the Baltic Sea is roughly one such region. The mean  for open water leads differ 
largely from the open water point for the Artic, but this is expected due to the calm and foam-
free surface of the leads, and the difference in the incidence angle (HUTRAD 46º for open 
water vs. SSM/I with 53º). Based on the Figure 6.4, it seems that the Bootstrap algorithm also 
is suitable in the Baltic Sea after adjusting point O and line AD using SSM/I and AMSR-E 
data acquired in different ice conditions, e.g. dry/wet snow condition. 

BT

BT BT

BT

A scatter plot of the 18.7 GHz  versus V-polarization  between 36.5 and 18.7 GHz is 
illustrated in Figure 6.5(a). These ratios are used in the NASA Team algorithm. Figure 6.5(a) 
shows also the NASA Team algorithm triangles using the Arctic tie points (Cavalieri et al. 
1991) and the Baltic Sea tie points (Grandell and Hallikainen 1994). As expected, the Baltic 
Sea tie points agree better with the airborne -  signatures than the Arctic tie points. The 
signatures of various ice types are scattered over a large area and, thus, again only derivation 
of the total ice concentration is possible. The large scatter is probably again due to the very 
fine resolution of the airborne data. The poor resolution of the SSM/I data was again 
approximated by the means and standard deviations, Figure 6.5(b). The mean -GR  values 
are very close to the Baltic Sea first-year ice tie point and the standard deviations are small. 
The results suggest that at least under partial dry snow condition it is not possible to modify 
the NASA Team algorithm to map concentrations of new ice (i.e. thin ice) and all other ice 
types combined in the Baltic Sea as has been done in the Arctic seasonal ice areas (Cavalieri 
1994). Like the results of Grandell and Hallikainen (1994) and Grandell et al. (1996), Figure 
6.5 also suggests that the NASA Team algorithm is suitable for determination of the Baltic 
Sea total ice concentration. However, the values of the tie points should be studied with 
SSM/I or AMSR-E data sets of different ice conditions. It is possible that the algorithm 
triangle can be replaced with a single line connecting the tie points for open water and 100% 
ice concentration. 

GRPR

GRPR

PR
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Figure 6.4 36.5 GHz V-polarized versus 18.7 GHz V-polarized brightness temperatures for 
various surface types using the IMSI-97 partial dry snow cover data. (a) Scatter plot using the 
data averaged to a resolution of 100 m. For explanation of line AD and symbols B, I, and O 
see text. (b) Mean and ±1 standard deviation confidence intervals of the brightness 
temperatures. 
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Figure 6.5 Polarization ratio at 18.7 GHz versus V-polarization gradient ratio between 36.5 
and 18.7 GHz for various surface types using the IMSI-97 partial dry snow cover data.  
(a) Scatter plot using the data averaged to a resolution of 100 m. (b) Mean and ±1 standard 
deviation confidence intervals of the polarization and gradient ratio. 
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6.5 Summary 
The most important results for deriving the Baltic Sea ice concentration with the SSM/I and 
AMSR-E data are: 

(1) The mean  decreases (max 0.10) at all frequencies with increasing ice deformation, 
i.e. large scale roughness. 

PR

(2) The principal component analysis (PCA) indicated that the airborne radiometer datasets 
were only one-dimensional, which suggests that only concentration of two Baltic Sea 
surface types, open water and sea ice in general, can be resolved from spaceborne 
radiometer data. 

(3) Open water leads can be discriminated from all sea ice types using even single-channel 
data in the frequency range 6.8 to 36.5 GHz, regardless of the wetness of snow cover. 

(4) Classification of various ice types is possible under dry snow condition using  and 
 ratios. However, determination of the Baltic Sea ice type concentrations from coarse 

resolution spaceborne data may not be possible, because the mean -GR  signatures 
for various ice types are very close to each other. This is supported by the PCA results. 

PR
GR

PR

(5) The results for the partial dry snow cover data suggest that it is possible to use 
spaceborne radiometer data with the NASA Team and Bootstrap algorithms to map total 
ice concentration after modification of the reference signatures for open water and 100% 
ice concentration. Likely, it is not possible to modify the NASA Team algorithm to 
resolve concentrations of thin ice and all other ice types combined in the Baltic Sea as 
has been done for the Arctic seasonal ice zones. 
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7 Conclusions 
The intention of the presented work was to conduct basic research on the microwave remote 
sensing of the Baltic Sea ice in order to support development of operational classification 
algorithms for spaceborne SAR data (ERS-2, RADARSAT-1, ENVISAT ASAR; forthcoming 
RADARSAT-2 and TerraSAR-X), and ice concentration algorithms for SSM/I and AMSR-E 
radiometer data. Additionally, a comprehensive review of the previous work was presented. 
The main results, and also new scientific knowledge achieved in this work, are  
summarized as: 

°σ• Empirical statistics for C- and X-band  signatures of various ice types have been 
established using a large amount data acquired with the helicopter-borne HUTSCAT 
scatterometer [P1]. 
− It is not possible to reliably discriminate open water and various ice types using only 

the level of , ,  (i.e. intensity) or std(coR crR ). σ° σ°

− Snow wetness has a large effect on the σ°  statistics. Notably, when snow cover is wet, 
the  contrasts between various ice types are smaller than in dry snow case. (This 
has been observed also previously, but the results here with a large data set confirm 
this firmly). 

σ°

− C-band VH-polarized σ°  at high incidence angle, e.g. 45º, provides slightly better ice 
type discrimination accuracy than any other combination of used C- and X-band radar 
parameters. 

− The  contrast between level ice and ice deformations is larger at VH-polarization 
than at co-polarizations. Thus, VH-polarized SAR images are more suitable for 
estimating the degree of ice deformation. 

σ°

• L- and C-polarimetric discriminants for four ice types have been studied using airborne 
SAR data averaged to simulate coarse resolution spaceborne data (pixel size was 60 by  
60 m) [P2]. 
− Multiple scattering is stronger at L- than at C-band. 
− C-band results can be generally explained by dominating ice surface scattering. 
− At L-band the scattering process seems to be more complicated and further work in 

needed to find out the dominating scattering mechanisms. 

• Empirical relationships has been established between the radar incidence angle  and 
mean C-band HH-polarized  (RADARSAT-1 SAR) under dry snow and wet snow 
condition [P3]. 

0θ
σ°

− The method for deriving the relationship is also applicable for other SAR images. 
− The relationship between σ°  and 0θ  is the basis for compensating the σ°  incidence 

angle variation in the SAR images before their classification. 

• Standard deviation of  for various ice types depends on the length of measurement ( l ) 
[P4]. 

σ°

− It seems that sea ice  as a function of l  is not completely described either by 
fractional Brownian motion, a process with a single-scale autocorrelation function or 
as samples from only one probability distribution (e.g. random fading). 

σ°

− The regression coefficients ,  of (4.6) describing the dependency of ln( l ) versus 
ln(std(σ° )) do not discriminate various ice types better than just mean and std of 

a b
σ° , 

but their use is preferred due to their scale-invariant comparability with the results of 
other studies. 
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− It is possible that a relation exists between  computed from a profile of large scale 
ice surface roughness and b  computed from a 

b
 profile. °σ

°σ• There is a large variation of level ice  with changing weather conditions. A 1-D high-
resolution thermodynamic snow/ice model (HIGHTSI) generally helps to interpret 
changes in the  time series [P5]. °σ

− The modeled snow and ice surface temperature, cases of snow melting, and evolution 
of snow and ice thickness are related to the changes in °σ . 

− The HIGHTSI model could act as an indicator of various ice and snow conditions and, 
combined with SAR data, provide an empirical database describing typical 
relationships between  and changing sea ice properties for SAR classification 
algorithm development. 

°σ

• Empirical statistics for  and  signatures of various ice types in the frequency range 
from 6.8 to 36.5 GHz have been established using airborne radiometer data [P6]. 

BT PR

− It is possible to use spaceborne radiometer data with the NASA Team and Bootstrap 
algorithms to map total ice concentration after modification of the reference signatures 
for open water and 100% ice concentration. (A previous result confirmed here). 

− Likely, it is not possible to resolve concentrations of thin ice (i.e. new ice) and all 
other ice types combined in the Baltic Sea, as has been done for the Arctic seasonal ice 
zones. 

7.1 Recommendations for Future Research 
In the following are some suggestions for future research concerning microwave remote 
sensing of the Baltic Sea ice. 

Major topics relevant for SAR-based sea ice monitoring 
All future field campaigns should include measurements of ice small-scale surface roughness 
to enable comparison between theoretical °σ °σ models and empirical  data for validation of 
the theoretical models and better interpretation of °σ  data. 

Large-scale surface ice roughness measurements with a 3-D laser profiler would enable to 
study relationships between  and surface roughness statistics, i.e., extend the study of [P4]. °σ

The results of [P5] need to be verified and extended using a larger SAR database with a small 
average sampling interval, like 2-3 days, and combined with detailed ground truth data (e.g. 
surface roughness, solar shortwave and thermal longwave radiative fluxes). The HIGHTSI 
model should be further developed to simulate also bulk or vertical profile of snow wetness 
and a statistical distribution of snow grain size. Validated theoretical °σ  models together with 
the improved HIGHTSI model should enable to much better understand the changes in the °σ  
time series. 

Capability of L-band SAR data for the Baltic Sea ice monitoring. This can studied using 
ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data 
(1.27 GHz; maximum swath width 250 to 350 km with either HH- or VV-polarization). 
According to (Dierking and Askne 1998), the °σ  contrast between level ice and deformed ice 
types was much larger at L-band than at C-band. 

Capability of polarimetric SAR data for the Baltic Sea ice monitoring. Polarimetric 
discriminants and decomposition theorems (Cloude and Pottier 1996) should provide better 
ice type discrimination than current single- and dual-channel SAR data. RADARSAT-2 
(launch scheduled for 2007) will provide C-band polarimetric data over narrow 25 km wide 
swaths. 
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Minor topics relevant for SAR-based sea ice monitoring 
Volume scattering models need data on the air bubble size, shape and correlation between the 
positions of the bubbles in sea ice. Statistics on these variables are very limited and, if 
possible, they should be acquired in the field campaigns. 

rεFurther measurements of the Baltic Sea ice dielectric constant  should be conducted in 
order to verify the model in (4.1) and (4.2). The study should include measurements of both 
new thin ice and older thicker ice to determine their rε  behavior. 

Dielectric constant for snow on the Baltic Sea ice has never been investigated. Its 
measurements for snow covers with different characteristics (density, wetness, grain size) 
would allow to assess the accuracy of the snow fork instrument (Sihvola and Tiuri 1986) for 
estimation of snow density and wetness. The instrument calculates density and wetness from 
the measured  (below 1 GHz) using empirical relations developed for snow on land. 
Statistics on snow density and grain size are also useful for theoretical 

rε
°σ  modeling. 

Capability of X-band SAR data for the Baltic Sea ice monitoring. In near future X-band SAR 
data are available from TerraSAR-X (launch scheduled for 2007). According to HUTSCAT 
results in [P1] C-band is slightly better for sea ice monitoring than X-band. 

Topics relevant for sea ice monitoring based on radiometer or optical data 
SSM/I and AMSR-E radiometer data can provide estimation on the Baltic Sea ice 
concentration, after modifications of the algorithms for the Artic Sea ice or development of 
new algorithms (this task is rather easily achieved as the data are free and software tools are 
available). 

MODIS optical and infrared data can provide independent information on the Baltic Sea ice 
conditions for validation of the SAR and radiometer based sea ice products, after cloud 
masking and surface type classification algorithms have been developed specially for the 
Baltic Sea. 

General scientific interest 
In general, it would be very interesting and useful to study evolution of °σ  and  signatures 
for sea ice, from the formation of ice to thick snow covered ice and further through spring 
melting, using tower-based multi-frequency, multi-incidence angle measurements combined 
with detailed ground truth measurements. 

BT
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8 Summary of Appended Papers 
[P1] 

Backscattering signatures of various Baltic Sea ice types and open water leads were measured 
with the helicopter-borne C- and X-band HUTSCAT scatterometer during six ice research 
campaigns in 1992-1997. The measurements were conducted at incidence angles of 23 and 45 
degrees. The HUTSCAT data were assigned by video imagery into various surface type 
categories. The ground data provided further classification of the HUTSCAT data into 
different snow wetness categories (dry, moist and wet snow). Various basic statistical 
parameters of backscattering signature data were used to study discrimination of open water 
leads and various ice types. The effect of various physical parameters (e.g. polarization, 
frequency, snow condition) to the surface type discrimination was investigated. The results 
from the data analysis can be used to help the development of sea ice classification algorithms 
for space-borne SAR data (e.g. Radarsat and Envisat). According to the results from the 
maximum likelihood classification it is not possible to reliably distinguish various surface 
types in the SAR images only by their backscatter intensity. In general, the best ice type 
discrimination accuracy is achieved with C-band VH-polarization σ°  at an incidence angle of 
45 degrees. 

[P2] 
The analysis performed in this paper is based on only two fully polarimetric airborne C- and 
L-band SAR images acquired over the Baltic Sea. The polarimetric discriminants computed 
from these two scenes are compared briefly with the corresponding results obtained in the 
Arctic conditions. Then the properties of the polarimetric discriminants as sea ice type 
classifiers are investigated. The backscatter coefficients with one polarization act as reference 
discriminants. The comparison between these two classifier sets is carried out with coarse 
resolution data. 

[P3] 
Incidence angle dependence of three statistical parameters—the mean of the backscattering 
coefficient ( ), standard deviation, and autocorrelation coefficient of texture (  and Ts Tρσ° ) – 
of the C-band horizontal-horizontal (HH) polarization backscattering signatures of the Baltic 
Sea ice are investigated using RADARSAT ScanSAR Narrow images and helicopter-borne 
Helsinki University of Technology Scatterometer (HUTSCAT) data. The analysis of the large 
amount of data shows that the relationship between the mean σ°  in decibel scale and the 
incidence angle in the range from 19 to 46 degrees is usually well described by a linear 
model. In general, the RADARSAT and HUTSCAT results agree with each other, and they 
are also supported by theoretical backscattering model calculations; the more deformed the 
ice, the smaller the slope between σ°  and the incidence angle, and the higher the moisture 
content of snow or ice, the larger the slope. The derived σ°  incidence angle dependencies can 
be used to roughly compensate the incidence angle variation in the SAR images to help their 
visual and automated classification. The variability of  and Ts Tρ  with the increasing 
incidence angle is insignificant compared to the variability within each ice type. Their average 
changes with the incidence angle are so small that, in practice, their trends do not need to be 
compensated. The results of this study can be utilized when developing classification 
algorithms for the RADARSAT ScanSAR and ENVISAT HH-polarization Wide Swath 
images of the Baltic Sea ice. 
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[P4] 
This paper studies whether the standard deviation (std) of the Baltic Sea ice backscattering 
coefficient ( ) depends on the length of measurement ( l ). For many kinds of surfaces, 
especially for a fractal one, this is the case. The study was conducted using one-dimensional 
C-band helicopter-borne scatterometer data and ENVISAT synthetic aperture radar (SAR) 
images. The results with both data sets indicate mostly a strong linear dependence between 
ln( l ) and ln(std(σ° )) up to a distance of at least a few kilometers. Based on the analysis of 
empirical and simulated data (fractal and nonfractal profiles), it seems that sea ice σ°  as a 
function of l  is not completely described either by fractional Brownian motion or by a 
process with a single-scale autocorrelation function. Neither can the values of  be regarded 
as samples from only one probability distribution. The regression coefficients describing the 
dependency of ln( ) versus ln(std(σ° )) do not discriminate various ice types better than mean 
and std of . However, the use of regression coefficients instead of mean and std is 
preferred due to their scale-invariant comparability with the results of other studies. The 
dependence of std( ) on l  should also be taken generally into account in the data analysis, 
e.g., when constructing classifiers for sea ice SAR data. 

σ°

σ°

l
σ°

σ°

[P5] 
We have compared time series of C-band HH-polarization backscattering coefficients ( °σ ) of 
the Baltic Sea land-fast level ice with results from a 1-D high-resolution thermodynamic 
snow/ice model (HIGHTSI). The  time series were obtained from ENVISAT synthetic 
aperture radar (SAR) images. The study period was from the middle of the winter to the early 
melt season, February 3 - April 7, 2004. Due to the large incidence angle range of the SAR 
images, the  values were divided into three subseries. In general, the HIGHTSI results 
greatly helped to interpret the  behavior with changing ice and weather conditions. The 
modeled snow surface temperature, cases of snow melting, and evolution of snow and ice 
thickness were related to the changes in 

°σ

°σ
°σ

°σ . Equally useful information could not be obtained 
solely on the basis of large-scale atmospheric models. Realistic forcing data for HIGHTSI 
were available in the form of coastal weather observations and model results of the European 
Centre of Medium-Range Weather Forecasts (ECMWF). The latter make it possible to apply 
HIGHTSI in the interpretation of SAR data from all ice-covered seas. There were some cases 
where detailed ground truth, combined with theoretical °σ  modeling, would have been 
needed for interpretation of the  trends. A very interesting observation was the large 
variation of level ice 

°σ
°σ  with changing weather conditions, which complicates automatic 

classification of the SAR images, and thus, the algorithms must be tuned for different ice 
conditions. The HIGHTSI model could act as an indicator of various ice conditions for 
algorithm development. 
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[P6] 
Passive microwave signatures of various Baltic Sea ice types and open water leads were 
measured in the spring of 1995 and in March 1997 with airborne non-imaging microwave 
radiometers (MWR) operating in the frequency range from 6.8 to 36.5 GHz. The MWR 
datasets were assigned by video imagery into open water leads and various ice type 
categories. The ground data provided further classification into dry, moist and wet snow sub-
categories. The datasets were used to study the behavior of the brightness temperature and 
polarization ratio as a function of frequency and the degree of ice deformation; additionally, 
the dimensionality of multichannel datasets, classification of surface types, and suitability of 
the SSM/I and AMSR-E data and NASA Team and Bootstrap ice concentration algorithms 
for the mapping of the Baltic Sea ice were examined. The results indicate that open water 
leads can be distinguished from sea ice regardless of the snow cover wetness, using even 
single-channel MWR data. Classification of ice types is possible only under dry snow 
condition. Determination of the ice type concentrations from the coarse-resolution spaceborne 
MWR data is not feasible, because the mean signatures for various ice types are very close to 
each other. The results also suggest that SSM/I and AMSR-E data together with the NASA 
Team and Bootstrap algorithms can be used to map total ice concentration after modifications 
of open water and sea ice reference signatures. 
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