
 

 

  
Abstract—Diffuse viral encephalitis may lack fever and other 

cardinal signs of infection and hence its distinction from other acute 
encephalopathic illnesses is challenging. Often, the EEG changes 
seen routinely are nonspecific and reflect diffuse encephalopathic 
changes only. The aim of this study was to use nonlinear dynamic 
mathematical techniques for analyzing the EEG data in order to look 
for any characteristic diagnostic patterns in diffuse forms of 
encephalitis. 

It was diagnosed on clinical, imaging and cerebrospinal fluid 
criteria in three young male patients. Metabolic and toxic 
encephalopathies were ruled out through appropriate investigations. 
Digital EEGs were done on the 3rd to 5th day of onset. The digital 
EEGs of 5 male and 5 female age and sex matched healthy 
volunteers served as controls.  

Two sample t-test indicated that there was no statistically 
significant difference between the average values in amplitude 
between the two groups. However, the standard deviation (or 
variance) of the EEG signals at FP1-F7 and FP2-F8 are significantly 
higher for the patients than the normal subjects. The regularisation 
dimension is significantly less for the patients (average between 
1.24-1.43) when compared to the normal persons (average between 
1.41-1.63) for the EEG signals from all locations except for the Fz-
Cz signal. Similarly the wavelet dimension is significantly less (P = 
0.05*) for the patients (1.122) when compared to the normal person 
(1.458). EEGs are subdued in the case of the patients with presence 
of uniform patterns, manifested in the values of regularisation and 
wavelet dimensions, when compared to the normal person, indicating 
a decrease in chaotic nature. 
 

Keywords—Chaos, Diffuse encephalitis, 
Electroencephalogram, Fractal dimension, Fourier spectrum. 

I. INTRODUCTION 
NCEPHALITIS is an inflammation of the brain due to a 
variety of agents but mostly by virus [1]. It is a disease 

with very high mortality and morbidity. Early diagnosis and 
appropriate treatment may reduce deaths and devastating 
residual neurological sequelae from encephalitis [2], [3]. The 
Electroencephalaogram is an important diagnostic tool in 
encephalitis [4], [5]. Diffuse forms of encephalitis is 
characterized by generalized background slowing and 
epileptiform discharges, whereas focal encephalitis has more  
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localized EEG changes such as focal slowing of background, 
focal epileptiform discharges, periodic lateralized epileptiform 
discharges (PLEDS) etc [6], [7]. In diffuse encephalitis, often, 
the EEG changes seen are nonspecific and reflect diffuse 
encephalopathic changes only. Diffuse viral encephalitis may 
lack fever and other cardinal signs of infection and hence its 
distinction from other acute encephalopathic illnesses is 
challenging [8], [9].  

In this paper several nonlinear dynamic mathematical 
techniques are used to analyse the EEG data from diffuse 
encephalopathic patients and compared with normal subjects 
to understand the differences between the two wave forms and 
to bring out the underlying features. These techniques could 
be used as a tool for diagnosing such a disease form, since it is 
very difficult for general medical practitioner to identify the 
disease from the raw EEG data.  

II. MATERIALS AND METHODS 

A. Patients’ Data 
Three patients were studied, all young males between 22-25 

years age, admitted during the period July-August 2006 at the 
Jawaharlal Institute of Postgraduate Medical Education and 
Research (JIPMER), Puducherry, South India. All three had 
acute onset of headache, irregular fever, vomiting and altered 
sensorium with bilateral pyramidal signs and mild neck 
stiffness lasting for 5-7 days followed by gradual 
improvement.  There were no preceding exanthematous 
fevers, vaccinations, animal bites or exposure to toxins or 
drugs. No past history of similar episodes, history of systemic 
diseases like diabetes, renal or liver disease or auto-immune 
diseases was known. There was no history suggestive of 
tuberculosis in the past or in the family members. As their 
acute state and sensorium started improving, all the three were 
in a wake and vigil state but continued to be non-
communicative and in urinary retension.  CT and MR scans of 
the brain on 2nd and 3rd   days showed mild diffuse brain 
edema with no meningeal enhancement or exudates. 
Cerebrospinal fluid studies showed 10-15 lymphocytes per 
cumm, normal sugar, 45-55 mg% protein and normal chloride. 
The viral serology titres were studied and found to be 
insignificant for Herpes, HIV, HBsAg, Measles, Rabies and 
Japanese encephalitis. Paul Bunnel test for Ebstein-Barr virus 
was also negative. Serum cryptococcal, cysticercus, 
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leptospira, VDRL, Weil Felix and Widal tests were negative. 
Peripheral smear for parasites were negative as was the QBC 
for malaria.  Metabolic profile including blood sugar values, 
urea and creatinine, serum electrolytes, serum ammonia and 
bilirubin, calcium and phosphorus and Serum alkaline 
phosphatase, and blood gases were within the normal limits. 
The Thyroid function tests were normal as well. Toxic 
screening for organophosphorus, hydrocarbons and heavy 
metals were also negative. There were no clinical features to 
suggest any nutritional encephalopathy. Thus the important 
and common non-infectious and infectious causes for coma 
were ruled out. Based on the clinical profile and CSF findings, 
non-specific diffuse type viral encephalitis was the final 
diagnosis. All the patients recovered without significant 
neurological sequelae by the second month. 

EEG studies: Digital Video-EEG studies were performed in 
all the three patients during the 5th to 8th days of their illness 
without using any sedative in the wake stage for about 30 
minutes. The universal 10-20 scalp surface Electrode 
placement system was followed. A 16 channel recording was 
done at the sensitivity of 7 microvolts per mm, with 1 Hz and 
70 Hz as upper and lower frequency limits with a 50 Hz filter, 
at 10 seconds per page sweepspeed, using a Bravo (Nicolet, 
Vyasys) EEG system. Photic stimulation was done as a 
provocative measure in all the cases. Commands for 
hyperventilation were delivered to patients routinely and 
timing documented. Any spontaneous sleep during the study 
period was unintervened.  

EEG studies were done similarly in five male and five 
normal adults whose average ages matched that of the patients 
for each gender, as controls with the same settings as above 
[10], [11]. 

B. Quantitative Mathematical Analysis of the Digital EEG 
Several nonlinear dynamic mathematical techniques have 

been used for analyzing EEG data, in order to extract the 
hidden features, minimize noise and understand the spatio- 
temporal nature of the oscillations. These techniques help in 
differentiating the EEG signals of the diseased patients with 
the normal ones. Generally Epileptic EEG signals have been 
analysed using correlation dimension [12]. Theory of chaos 
has been applied to control seizure attacks. Fourier transform 
has been used to analysis sleep stages [13].  

Several mathematical techniques are used in this paper for 
analysing the EEG signals which are normally used in 
analysing spatio-temporal signals. The following paragraphs 
describe these techniques such as t-test, ANOVA, 
Regularisation dimension, and Wavelet dimension and 
Appendix I gives the corresponding mathematical relations. 

A times series or signal is a finite sequence of real values 
recorded over time in a space. This signal is transformed 
(using a specific transformation function) into a signal in a 
transformed space. To achieve dimensionality reduction some 
subset of the transformed coefficients are selected as features. 
These features form a feature space which is simply a 
projection of the transformed space. The Fourier transform is 

based on the observation that every signal can be represented 
by a superposition of sine and cosine waves.  

Wavelet transforms give gradually refined representation of 
the signal of different scales, which correspond to basis 
functions of different length. The continuous wavelet 
transform (CWT) is a time–frequency analysis method which 
differs from the Fourier transform by allowing arbitrarily high 
localization in time of high frequency signal features. The 
CWT does this by having a variable window width, which is 
related to the scale of observation—a flexibility that allows 
for the isolation of the high frequency features. Another 
important distinction is that it is not limited to using sinusoidal 
analysing functions, but a large selection of localised 
waveforms can be employed as long as they satisfy predefined 
mathematical criteria.  

Hausdorff dimension is the fundamental definition of the 
fractal dimension in the theory of fractal geometry. It is 
difficult to measure the dimension of a set directly from the 
definition. Many alternative methods of measuring the 
dimension of a set have been developed. Regularisation 
dimension has been proposed as an approximate to the 
Hausdorff dimension. The advantages of the regularisation 
dimension are: i) it is more precise than other approximation 
methods; ii) it is easy to derive an estimator in the presence of 
noise due to the fully analytical definition [15]. One first 
computes smoother and smoother versions of the original 
signal, obtained simply through convolution with a kernel. 
Now, if the original signal is "fractal", its graph has infinite 
length, while all regularized versions have finite length. When 
the smoothing parameter tends to 0, the smoothed version 
tends to the original signal, and its length will tend to infinity. 
The regularization dimension measures the speed at which this 
convergence to infinity takes place. In many cases, this will 
coincide with the usual box dimension. In general, it can be 
shown that the regularization dimension is more precise than 
the box dimension, in the sense that it is always smaller, but 
still larger than the Hausdorff dimension.  

Wavelet dimension is estimated from the wavelet 
transformed data. This method is appropriate for analysis of 
non-stationary traces, i.e. where the variance does not remain 
constant with increasing length of the data set.  Fractal 
properties are present where the wavelet power spectrum is a 
power law function of frequency.  The Wavelet method is 
based on the property that Wavelet transforms of the self-
affine traces have self-affine properties. 

The Poincare’ map is a classical tool in the study of a 
dynamical system around a known periodic solution. A 
Poincare’ section or map is a device invented by Henri 
Poincare’ for analysing systems of higher than two 
dimensions, by projecting the data on a two dimensional 
plane. The patterns that are seen in the two dimensional plane 
could throw light into the underlying pattern and the 
embedded complexities. 

The statistical tests were performed using Kyplot ver. 2.0 
(Koichi Yoshioka). The wavelet dimension was estimated 
using Benoit ver. 1.31 software (TruSoft Int’l Inc, FL, USA) 
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and Regularisation dimension was determined using FracLab 
ver 1.1 (INRIA Paris, France). 

III. RESULT AND DISCUSSIONS 
Figs 1 to 3 show the raw EEG signals of the Fp1-F7, Fp2-

F8 and Fz-Cz leads respectively of a healthy volunteer and an 
encephalitis patient.  No obvious differences could be seen 
between these two sets of signals with naked eye. In the 
patients, the background EEG was generally of low voltage of 
5-10 microvolt amplitude and 7-8 Hz frequency with 
appreciable monotony of the waveforms. The response to 
commands for eye-opening and closure, name calls and 
hyperventilation were diminished. No significant asymmetry 
was seen between left and right side records and there was no 
abnormal focal regional slowing. Paroxysmal activities such 
as spikes or sharp waves were conspicuously absent 
throughout the record. Thus the EEG suggested a mild diffuse 
non-specific encephalopathy in all three cases.  

Most medical institutions, even the advanced centers and in 
developed countries, lack facilities for characterizing all viral 
species except for the few common agents but a robust 
diagnosis of viral encephalitis can be made on clinical 
grounds itself as in our series [3].  Even virology research 
centers have narrow spectrums of diagnostic acumen 
depending upon their location and specific interests related to 
regional health care priorities. The patients studied befitted a 
clinical diagnosis of nonspecific diffuse viral encephalitis. 
Appropriate laboratory investigations rules out metabolic and 
other important causes of non-encephalitic forms of diffuse 

encephalopathies. The viral agent could not be identified in 
this particular epidemic as is often the case in most such 
epidemics but the diagnosis of viral encephalitis has been 
robust. The EEG changes in encephalitides of various viral 
origins have several common features, often mimicking 
diffuse encephalopathies [3]-[5], [7]-[9], [16]-[24]. 

 
 

 
Fig. 1 Raw EEGs (Fp1-F7) 

 

 
Fig. 2 Raw EEGs (Fp2-F8) 

 

 
Fig. 3 Raw EEGs (Fz-Cz) 

 
Table I lists the mean of the average values of EEG from 
various locations both for the patients and normal volunteers. 

TABLE I 
COMPARISON OF MEAN OF AVERAGE VALUES OF EEGS 
 Normal Patients t calculated P 

Fp2-F8 40.8 41.0 0.019 >0.05 

Fp1-F7 24.1 26.7 0.29 >0.05 

T6-O2 2.69 -9.6 0.69 >0.05 

T5-O1 -5.2 2.7 0.83 >0.05 

Fz-Cz -23.6 -31.0 0.31 >0.05 

 
 

TABLE II 
COMPARISON OF MEAN OF STANDARD DEVIATION VALUES OF EEGS  

 Normal Patients t calculated P 

Fp2-F8 50.5 115.5 2.39* <=0.05 

Fp1-F7 39.7 131.9 4.52** <=0.01 

T6-O2 294.4 23.4 1.68 >0.05 

T5-O1 72 19.1 1.0 >0.05 

Fz-Cz 2144 59 1.9 >0.05 
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Two sample t-test indicates that there are no statistically 
significant difference between the average values between the 
two groups.  

Table II lists the mean of the standard deviation values of 
EEG from various locations both for the patients and normal 
personnel. Two sample t-test indicates that statistically 
significant difference between the standard deviation values 
between the two groups are seen at Fp2-F8 and Fp1-F7 
locations (P<0.05*), while no statistical difference was seen 
between the standard deviation values between the two groups 
at other places. The standard deviation (or variance) of the 
EEG signals at these two symmetric frontal/anterior temporal 
locations are significantly higher for the patients than the 
normal persons.  

The Regularisation dimension is significantly less for the 

patients (average between 1.24-1.43) when compared to the 
normal persons (average between 1.41-1.63) for the EEG 
signals from all locations (P<0.01**) except for the Fz-Cz 

signal (P>0.05) (Table III).  
Similarly the wavelet dimension is significantly less (P < 

0.05*) for the patients (1.122) when compared to the normal 
person (1.458) (Table IV).  

 
Table IV Comparison of wavelet dimension for combined 

Fp2-F8 and Fp1-F7 signals (t calculated = 2.075* (P < 0.05)) 
Fractal dimension is an indication of the spatial nature of the 
spectrum and a reduction in its value is an indication of 
decrease in chaos. A normal healthy person is expected to 
have a chaotic EEG and it is subdued in the case of the 
patients with presence of uniform patterns. A decrease in 
randomness for alcoholic and epileptic patients when 
compared to normal patients due to hyper-synchronization of 
EEG has been observed by researchers [12]. Lee et al [25] 
have observed that the correlation dimension with spatial 
embedding as a good discriminating statistics for 
differentiating EEGs of normal and schizophrenic patients. 
The latter were found to have lower dimensional complexity. 
Similarly decreased complexity of EEG patterns in 
Alzheimer’s disease patients has been observed by Abasolo et 
al [26].  

The Fast Fourier transform analysis of the Fp2-F8 of an 
encephalitis patient and a normal healthy female is shown in 
Fig 4 (Figs for other locations are not shown). While several 
dominant frequencies are observed in a normal healthy female 
in all the three locations, the number of dominant frequencies 
is less in the case of the patients indicating decrease in chaotic 
nature of the oscillations. The amplitude of the frequencies is 
an indication of the energy of the spectrum. The average total 
energy of the signals of the encephalitis patient is lesser than 
that of the normal person. Decrease in chaos and entropy has 
been observed in epileptic patients when compared to normal 
patients [27]. Decrease in EEG complexity has been observed 
during first episode schizophrenia leading to reduced ability to 
process information [28]. Fast fourier transform has been used 
to study various sleep patterns including REM and identify 
existence of scale independent behaviour [13],[29], 
[30].Decrease in dominant frequency have been observed 
interictally in epileptic patients. 

 
 

TABLE III 
  COMPARISON OF REGULARISATION DIMENSION FOR NORMAL PERSONS 

AND PATIENTS. 
 

 Fp2-F8 Fp1-F7 

 Patient Normal Patient Normal 

Mean 1.245 1.625 1.27 1.63 

Standard 

deviation 

0.03 0.09 0.03 0.023 

t -calculated 9.98* 8.3* 

P <=0.001 <=0.001 

 
 T6-O2 T5-O1 

 Patient Normal Patient Normal 

Mean 1.406 1.574 1.434 1.621 

Standard 

deviation 

0.085 0.102 0.09 0.101 

t -calculated 3.6* 4.008* 

P <0.01 <0.01 

 
 Fz-Cz 

 Patient Normal 

Mean 1.282 1.412 

Standard 

deviation 

0.0485 0.18 

t -calculated 1.72 

P >0.05 

 

TABLE IV 
COMPARISON OF WAVELET DIMENSION FOR COMBINED FP2-F8 AND FP1-F7 

SIGNALS (T CALCULATED = 2.075* (P < 0.05)) 

  
 Patient Normal 

Mean 1.122  1.458 

Standard deviation 0.007 0.373 
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(b) Normal female 

Fig. 4: Fast Fourier transform of Fp2-F8 EEG data (a) patient and 
(b) Normal female 

Comparison of the Poincare’ maps of the Encephalitis 
patient with a normal healthy male and a normal healthy 
female reveals interesting differences. A fixed pattern (a 
toroidal shape) is seen in the EEG of the patient when 
compared to the EEG of the normal male and female persons 
(elliptical shape covering the entire region) at Fp2-F8 (Fig 5). 
The map indicates the uniformity of the EEG signals at these 
two cranial locations for a patient, when compared to the 
healthy persons. The signals of the healthy patients are chaotic 
hence covers the entire Ponicare’ space, while that of the 
patients are uniform and nonrandom hence traversing only a 
smaller region of the 2D planar region. Decrease in 
complexity of EEG signals during alert eyes closed stage (α 
waves) when compared to alert eyes open stage (β waves) and 
during sleep stage 4 when compares to sleep stage 2 has been 
observed by Doble and Nadkar [31].  
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(a) Encephalitis patient 
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(c) Healthy female 

 
Fig. 5: Poincare’ map of Fp2-F8 EEG data (a) Encephalitis 

patient, (b) healthy male and (c) healthy female 

IV. CONCLUSION 
The EEG is subdued in the case of the patients with presence 
of uniform patterns. This is manifested in the values of 
Regularisation and wavelet dimensions. Both the dimensions 
are less for the patients when compared to the normal person. 
This indicates a decrease in chaotic nature of the EEG for the 
patients when compared to healthy volunteers. Fourier 
transformation of the signals from patients shows less number 
of dominant frequencies when compared to normal subjects 
which also indicates decrease in chaos. Poincare’ map also 
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reveals chaos in the normal subjects and a pattern in the 
patients. The mathematical techniques discussed in this paper 
appear to be a good set of tools for analyzing spatio-temporal 
oscillations and chaos. 

APPENDIX 
Fourier Transform 

The Fourier transform gives the set of frequency 

components, which exist in our signal. Any 2π-periodic 

function f(x) is the sum of its Fourier series  
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Wavelet transform  

The wavelet transform of a continuous time signal, x(t), is 

defined as [14]:  
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where ψ*(t) is the complex conjugate of the analysing wavelet 

function ψ(t), a is the dilation parameter of the wavelet and b 

is the location parameter of the wavelet. 

 

Regularisation dimension 

The regularisation dimension of a graph is given by the 

following equation 

log(a)-

)alog(L
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→
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K
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Let χ (t) be a kernel function such that:  

∫ χ = 1. Let χa(t)= 
a
1
χ(

a
t

)  

Be the dilated version of χ at scale a.  

Let fa be defined as fa = f * χa.  

Wavelet dimension  

Consider n wavelet transforms each with a different scaling 
coefficient ai, where s1, s2,..., sn are  the standard deviations 
from zero of the respective scaling coefficients  ai. If the ratio 
of the standard deviations are considered as the Hurst 
exponent (H) is H=f(Gavg), where f is a heuristic function 
which approximates the Hurst exponent by Gavg for stochastic 
self-affine traces. Generally n is assumed as equal to 4 and 
ai=2i, for i=0, 1, 2, 3. The fractal dimension = 2-H. In the 
software used here the mother wavelet is a step function.  
 
G1=s1/s2,  G2=s2/s3,..., Gn-1=sn-1/sn  
 
If Gavg is average of these ratios then, 
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