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Abstract

We introduce a new method based on Hausdorff measure spectrum function (HMSF) which provides a more precise

way for tracing the geometrical organization of a fractal set. The HMSF does carry a huge amount of information

about the set to likely be explored in a chosen way. Depending on the nature of the set, we propose two ways to extract

this information. We apply these methods to typical fractals as well as to synthetic models of porous media. This results

in a complete distinction between same fractal dimension sets.

� 2003 Elsevier B.V. All rights reserved.
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Various physical processes and structures share

the same fractal dimension in spite of their differ-
ent appearance. The most used and popularized

concept in fractal geometry was the fractal di-

mension. Only in the last decade, additional tools

to get rid of the degeneracy character of fractal

dimension have been developed. Among them, few

have been devoted to fractal features of �texture�, a
broad concept called lacunarity by Mandelbrot

(1983). Lacunarity has been introduced qualita-
tively, as a notion of texture based on the tendency

of a set to get gaps and intended to distinguish
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between two same dimensional fractal sets. This

texture notion, in its general, even loose quanti-
tative meaning, is strongly related to the shapes of

those gaps as well as to their distribution. Lacu-

narity has been related to a range of physical

phenomena where the mass distribution of physi-

cal structures is intrinsically involved. Examples

are as various as cosmology in the distribution

of galaxies, radar images, geology and material

sciences (Mandelbrot, 1983; Plotnick et al., 1996;
Pietronero, 1992; Hildgen et al., 1997). It is largely

documented that there is a need to develop meth-

ods that account for fine structure (Arneodo et al.,

2000; Gefen et al., 1984) since most of the prop-

erties depend, in addition to the fractal dimen-

sionality, on other geometrical factors related to

texture. In porous media, it is well known that

microstructure fluctuations can have important
consequences on bulk mechanical and rheological
ed.
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properties. Fat fractals––whose main peculiarity,

compared to thin fractals, consists in a finite (non-

zero) Lebesgue measure of their support––are

considered to be good representations of the micro-

architecture of porous solids. Indeed, the empty

holes of fat fractal have size-dependant power
distribution similar to porous materials (Bulgakov,

1992; Umberger and Farmer, 1985). To mathe-

matically quantify this loose notion of lacunarity,

several methods have been proposed. The gliding-

box algorithm (GBA) is one of them (Allain and

Cloitre, 1991). GBA has been derived from the

box-counting method by gliding a box over the set,

one unit at a time in a discrete manner. Despite the
popularity of this algorithm, it still proved to be

degenerate in rather simple cases (Fabio et al.,

1994), where two deterministic regular shapes of

the same fractal dimension have not been resolved.

In this fundamental context of characterization of

the fine structure of a fractal, one would like to

know if there is a way to build a more powerful

quantitative and characteristic tool to unveil the
information carried by the structure. Having this

purpose in mind, we have been led, through the

notion of lacunarity (Mandelbrot, 1983), to study

the Hausdorff measure of the intersection of sets of

same dimension with their translates (Nekka and

Li, 2002). In fact, Mandelbrot briefly mentioned

the potential relation between lacunarity and the

intersection of a set with its translate (Mandelbrot,
1983, p. 317). From this vague yet suggestive idea,

we introduced the translation method as a new

way to study the fine geometrical details in a

structure. The method we propose here is based on

the Hausdorff (or Lebesgue when these two mea-

sures coincide) measure of the translation of the

set through itself in a continuous manner. Since

the translation is made continuously on each point
(local) and that Hausdorff measure (global) is es-

timated, the measure function obtained is able to

extract the whole information within the structure.

In a concern of generality and since Lebesgue

measure can degenerate, we first apply the more

general notion of Hausdorff measure to show the

potential of the method. At this point, it should be

mentioned that the indicator function of the in-
tersection of a set with its translates can be viewed

as a two-point joint moment (autocovariance)
within the set�s indicator function. This explains in
a way why the measure function introduced here

naturally completes the information obtained from

pointwise descriptors. To explain the underlying

mechanism and test our method, we will use

Cantor-like sets of same fractal dimension as a
tractable model, which belong to thin sets and are

the most studied fractals. As a physical applica-

tion, we use the so called fat fractals which are

known to have fractal dimension equal to one in

1-D and which, as mentioned above, are good

models to simulate porous media.

In (Nekka and Li, 2002), we have set up the

fundamental properties of Hausdorff measure of
the intersection produced by these translations and

proposed to use, in a subsequent study, this spec-

trum of measures to distinguish between sets

having the same fractal dimension. As a first step,

we will use here what we call the Hausdorff mea-

sure spectrum function (HMSF) of the intersection

of a fractal set with its translate to characterize the

geometry of the set. This function has the advan-
tage of being easy to manipulate and allows for a

deep study of the set by revealing thus the whole

picture of its geometrical structure. In fact, this

Hausdorff measure function does carry a huge

amount of information about the set to likely be

exploited in a chosen way. In the case of thin sets,

we propose to distinguish them by taking advan-

tage of the property of translation invariance
(Nekka and Li, 2002) verified by the HMSF of

these sets. We suggest two successive steps to

process the characterization of the set. The first

one is based on what we call here the translation

invariance based method (TIBM). The second one

consists in comparing the dispersion of translation

shifts of this function for different sets at a fixed

measure level, which we call the fixed level based
method (FLBM). The latter one is necessary only

in case of insufficiency of the first step. FLBM

associates an index to sets which allows for their

differentiation as well as for evaluation of their

degree of homogeneity. For fat fractals, we

quantify the fluctuations in their HMSF using the

regularization dimension (RD) proposed by Levy-

vehel which proved to be more stable than the
box-counting dimension (Roueff and Levy-vehel,

1998).
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In (Nekka and Li, 2002), we found that the

Hausdorff measure of the intersection of triadic

Cantor set with its translates forms a discrete

spectrum of the form f0; ð1=2nÞn2Zþg when t varies
between )1 and 1 at its well-known Hausdorff
dimension s ¼ log 2= log 3. This discreteness of
Hausdorff measure can also be theoretically justi-

fied for other Cantor-type fractal sets and is

practically true for a large amount of self-similar

sets.

To exploit the HMSF within a classification

purpose, we illustrate our method using known

fractal sets, especially triadic Cantor sets. How-

ever, since a direct computation of HMSF is time
consuming and laborious, we propose three ap-

proximation algorithms based solely on the simi-

larity properties of fractals, whose generator can

be decomposed in identical parts, to compute the

HMSF. Thus, the algorithms can be directly ap-

plied to the five examples of Cantor-type sets in

Fig. 5. As the obtained values by the algorithms at

a generation n are the exact values of the final set,
it is more convenient to use Hausdorff metric to

evaluate the approximation as done in (Peitgen

et al., 1992). In fractal geometry, the Hausdorff

distance is used to measure the distance between

two sets. As an example, in the case of triadic

Cantor set, the Hausdorff distance between the

approximation set of HMSF of generation n and
the graph of HMSF is less than 1=3n þ 1=2nþ1
using our proposed algorithm. For the case of

fractal sets whose generator parts are not identical,

a more complex formalism can be developed based

on the similarity properties of these sets. This will

be the context in a more general work.

To get the HMSF of a general fractal set, one

can first estimate its fractal dimension and then use

it to substitute for the Hausdorff measure involved
in the HMSF expression. However, we are pres-

ently working on the potential of HMSF (as a

function of s) to extract the fractal dimension and
then use this dimension value within the HMSF

for the characterization of the set.

1. The first one is the similarity algorithm. It is

built upon the similarity properties of a fractal set

which are inherited by the HMSF itself. Let C be
the triadic Cantor set generated from the unit in-

terval [0, 1], and consider the intersection of C with
its translation C þ t, that we denote by IðtÞ ¼
C \ ðC þ tÞ, where t varies between )1 and 1. Let
C ¼ Cl [ Cr, where Cl and Cr are respectively the
identical left and right parts of C. We have
C \ ðCþ tÞ ¼ ðCl [CrÞ \ ððClþ tÞ [ ðCrþ tÞÞ, which
results in the union of four parts giving rise to the
general equation:

MðtÞ ¼ ðMð3t 
 2Þ þ 2Mð3tÞ þMð3t þ 2ÞÞ=2
ð1Þ

where MðtÞ ¼ HsðIðtÞÞ, whose spectrum gives the
corresponding HMSF. It is easy to see that the

graph of MðtÞ can be generated from the initial

set fð
1; 0Þ; ð0; 1Þ; ð1; 0Þg by means of three affine
maps si, i ¼ 0; 1; 2, where siðX Þ ¼ AiðX Þ þ Bi;

X ¼ x
y

� �
, A0 ¼

1
3
0

0 1

� �
, A1 ¼ A2 ¼

1
3
0

0 1
2

� �
,

B0 ¼ 0, B2 ¼ 
B1 ¼
2
3

0

� �
. If we denote by G the

graph of MðtÞ, then G is the invariant set (attrac-
tor) by the union of three affine maps: s0, s1, s2, i.e.

G ¼ s0ðGÞ [ s1ðGÞ [ s2ðGÞ
The process is shown in Fig. 1.

2. The second method is based on interpolation.

First, recall that HMSF is symmetric and discon-

tinuous everywhere, but that it can be approxi-

mated by a sequence of continuous functions

(Nekka and Li, 2002). We know that the triadic

Cantor set is given by C ¼
T1

n¼0 Cn. Let us con-

struct the sequence of the approximating functions
of MðtÞ. The initial unit weight will be conserved
through subsequent generations (in an iterative

process, generations refer to the successive steps

involved in the process). Denote by mn the measure

of uniformly distributing weights on each sub-

interval of Cn. Then, we construct a sequence of

measure functions of Cn \ ðCn þ tÞ, which is given
by:

MnðtÞ ¼ mnðCn \ ðCn þ tÞÞ

We have MnðtÞ ! MðtÞ. The approximation is
shown in Fig. 2.

Moreover, this approximation by continuous

functions allows for an interpolation based

method to construct the HMSF. A checking for



Fig. 1. The construction of the HMSF using the similarity algorithm for generations: 0, 1, 3, 6.

Fig. 2. The approximation of the HMSF by a sequence of continuous functions; generations: 0, 1, 3, 6.
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several steps is enough to determine the interpo-

lation based on the scaling properties satisfied by

HMSF. It is easy to see that the interpolation will

converge to the real function MðtÞ. We omit the
detail here and just mention that Fig. 2 can also be

used to illustrate the interpolation procedure if we
consider each broken point as the point for inter-

polation.

3. Finally, if we only need to determine the

HMSF at a given point, we can exploit the simi-

larity property of the HMSF to write MðtÞ in the
following recursive form:

MðtÞ ¼

Mðjtj 
 2=3Þ=2 if 1=36 jtj61;
Mðjtj 
 2=32Þ=2 if 1=326 jtj61=3;
� � �
Mðjtj 
 2=3nþ1Þ=2 if 1=3nþ16 jtj61=3n;
� � �

8>>>><
>>>>:

knowing that Mð0Þ ¼ 1 and 
16 t6 1.
Then one can quickly determine the numerical

values of MðtÞ for any given t without having
knowledge of the geometry of HMSF.
Now that we know how to approximate the

HMSF by different methods, let us show how to

use it to differentiate between sets having the same
Fig. 3. The HMSF of the sets b, c,
fractal dimension (in this example log 2= log 3).
For thin sets, the Cantor sets are constructed from

the initiator I ¼ ½0; 1�; we illustrate the procedure
of their construction in Fig. 5.

Fig. 1 shows the several iteration of the HMSF

of the fractal sets (a). Fig. 3 shows the sixth iter-
ation of the HMSF of the remaining fractal sets

(b)–(e). We propose here two different ways to

exploit the HMSF in order to distinguish between

these sets. With TIBM, we take the translation

invariant values of HMSF corresponding to values

preserved by translation. Each value corresponds

to a level, which is a set of points representing a

fixed HMSF value for different shifts (see Fig. 1).
The graph of these levels, in terms of the shift

number, are illustrated in Fig. 4.

We see that TIBM succeeds in distinguishing

between (a), (c) and (b) (or (d)). However, TIBM

levels are the same for (a) and (e) as well as for (b)

and (d). This last fact does not allow one to con-

clude that (a) and (e) or (b) and (d) are the same.

We have yet to go a step further in our exploration
and use the FLBM. This method compares, for a

given level, the HMSF values of the concerned

sets. In fact, the first level, which contains the
d, e according to the shift t.



Fig. 5. Construction of the Cantor-like sets of dimension

log 2= log 3.

Fig. 6. The first four levels of Hausdorff measure function,

represented by (�) and (�) for the Cantor set (a) and (e) re-
spectively.

Fig. 4. The Hausdorff measure levels where the translational invariance of the Hausdorff measure is preserved.
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whole information of HMSF, is very enough. In

Fig. 6, we plotted the first four fixed levels (from 0

to 3) of the HMSF of (a) and (e). Graphically, the

difference is already obvious on level one. This

difference can be quantified by averaging weighted

distances between shift values and their limit point

at the first level, giving thus level indexes associ-

ated to each set. For example, using a dyadic se-
quence weights f1=2igi, we get the value 0.5962 for
(a) and 0.6248 for (e). This index, from one part, is

able to differentiate between sets and, from the

other part, indicates the degree of homogeneity of

the set: the higher the index, the more homoge-
neous is the set. Finally, for sets (b) and (d), one
observes that they have the same HMSF once the

support corresponding to (d) is reported, by a re-

scaling centered on 0, on the same support of (b)

(Fig. 3). This equivalence is naturally also reflected

in the FLMB. If their supports of HMSF are re-

scaled to the same size, (b) and (d) can not be

distinguished by FLMB. In fact, it has no sense to

differentiate (b) and (d) since these two sets are
similar in their geometrical structure. This also



Fig. 8. Comparison of RD applied directly on the sets and on

their HMSF.
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suggests that FLMB should be based on the same

rescaled support size of HMSF. The five examples

taken here are by no means restrictive since the

methods used to distinguish between them are only

based on their similarity properties. We chose

them since they are good candidates to build a
rigorous mathematical formalism behind the

method. The difference between the construction

of thin Cantor sets and their fat versions can be

seen in a simple way. In the nth generation of a
thin Cantor set, the length of the central deleted

part of each interval is a proportion of an to the
total length. However, for fat fractals, this central

deleted part is a fraction an of the length of each of
the latter interval. We have considered four fat

fractals with a being equal to: 1/3, 1/4, 1/5, and
1/15. Given that the Hausdorff as well as the box-

counting dimensions of these fat fractals are 1,

these dimensions cannot be used to distinguish

between them. Hence, we have used the regulation

dimension since, by construction, it is more sen-

sitive to variations (Roueff and Levy-vehel, 1998).
We quantified RD of these fat fractals and their

HMSF, respectively. We found that, when RD is

applied directly to the sets, the differentiation by

this dimension is less effective compared to when it

is applied to their HMSF (Figs. 7 and 8). Indeed,

in the latter case, the difference in RD values in

terms of the hole size is amplified. Moreover, RD

of HMSF has a more linear and monotonic be-
Fig. 7. Differentiating four fat fractals of dimension one by the

regularization dimension of their HMSF.
havior than RD when directly estimated on the

sets.
In conclusion, we presented here a new method

of classification of fractal sets, based on Hausdorff

measure. This method offers a more precise de-

scription of the fine structure of complex sets

generally undistinguishable by existing methods.

Work on additional and more general examples

is in progress. We are also pursuing this work on

the potential of our method to characterize the
Hausdorff dimension.
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