
VARIOUS MATHEMATICAL

APPROACHES TO EXTRACT

INFORMATION FROM TEXTURES OF

INCREASING COMPLEXITIES

Fahima Nekka1 and Jun Li2
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Summary. Dealing with several structures of different complexities, we adopt vari-
ous strategies to extract information. The general idea is to find appropriate tools to
analyze the variation of the corresponding autocorrelation functions. First, for homo-
geneous media under different conditions, we recover, in a statistical way, a relation-
ship between porosity and the autocorrelation function. Then, for low-complexity
textures, we exploit this relationship to extract complementary parameters from
the autocorrelation function beyond porosity using spectral analysis. For fractal-like
structures, we process them according to their porosity. For fat fractals,usually used
as synthetic models of porous media, we combine the regularization dimension, a
method proposed to estimate the curve variation, with the autocorrelation function.
This leads to a more robust classification. For fractals of negligible porosity, such as
fractals of non-integer dimension, we discuss how the method HMSF we developed
serves as an original means to estimate the Hausdorff dimension and how it can be
exploited to give complementary characteristic parameters.

1 Introduction

New information and measurement technologies give access to signals of ex-
ceedingly complex nature, making it demanding for more sophisticated data
analysis to efficiently extract information beyond the scope of the traditional
methods. For example, the design of synthetic polymers has been revolution-
ized by the new achievements in high-resolution, broad-mass-range spectrom-
etry [1]. Wave propagation and scattering through porous media and highly
ramified materials lead to (spatial) signals which can be considered as defined
on fractal systems [2, 3]. As a matter of fact, the obtained mass spectra, which
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carry out microstructure information of great impact on the macroscopic phys-
ical properties, can be very complex. A central concern when processing such
complex data is to use tools that extract the maximum information with the
least degeneracy. The autocorrelating process, expressed through the auto-
correlation function is a classical mathematical method widely used in engi-
neering and applied sciences [4]. It is a powerful process that accumulates and
reorganizes intrinsic similarities hidden in a structure, allowing thus for a (pre-
)processing of the signal as well as its analysis. Fractal methods already proved
to be efficient to quantify complex information based on existing similarities.
The major use of fractal analysis is to measure this complexity through frac-
tal dimensions and other related indexes. However, inadequacy of traditional
methods when processing complex systems and the known limitations of pop-
ular fractal methods led us to investigate, in parallel, these two different ways
of information processing, and to combine them in order to create more pow-
erful and less degenerate methods [6, 7, 8, 9]. This resulted in an extension of
classical methods, making them applicable within a nowadays context knowl-
edge and in a benefit of fractal analysis from these classical and very popular
methods [7].

This paper is organized as follows. In Section 2, we propose several sta-
tistical models of homogeneous media from which we recover the relationship
between porosity and the autocorrelation function. In Section 3, we propose
complementary parameters to porosity by exploiting various complexities of
the autocorrelation functions of the signals. For low-complexity textures, we
propose a measure of departure from homogeneity. For fractal-like textures
exhibiting power law properties, usually used as synthetic porous media, we
show how it is possible to classify them by combining the autocorrelation
function with the regularization dimension [11]. We also consider the case
of non-trivial structures having zero porosity (thin fractals). For these struc-
tures, we use what we previously called Hausdorff measure spectrum function
(HMSF), which generalizes the classical autocorrelation function and proves
to be more sensitive and suitable to describe this kind of scattered objects
[6, 7, 8]. In section 4, we comment our proposed strategies and suggest some
possibilities to pursue additional work in this direction.

2 A Statistical Relationship Between Porosity and the

Autocorrelation Function

In signal processing, the autocorrelation function is often regarded as an-
other aspect of a signal which facilitates its analysis. To characterize a porous
structure, porosity is considered as one principal index reflecting its spatial oc-
cupancy. In this section, based on several statistical models of porous images,
we discuss the relationship between their porosity and their corresponding
autocorrelation function.
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Assume that a signal S(x) is of finite energy, we have the simplest form of
the autocorrelation function:

rS(t) =

∫

∞

−∞

S(x)S(x + t)dx. (2.1)

This self crossing process sums all point-point similarities (by product) of the
signal at distances t. Given the signal of an image set, the autocorrelation
function is dedicated to measure the similarity in the set’s geometric struc-
ture [4]. Though various forms of autocorrelation functions are widely used,
this basic idea is always the same.

Study of porous media mainly involves porosity, which refers to the occu-
pancy of the set, measured on samples having regular geometrical shapes. To
facilitate porosity estimation, we generally select for the sampling, the familiar
shapes such as cubes, cylinders, spheres, etc.

For a porous media of a large size, the concept of deterministic porosity is
questionable. We can invoke two possible reasons: the boundary as well as the
volume of the compartment where lives the porous media, generally having a
complex geometrical form, are difficult to be determined or the measurement
cannot be taken on the whole porous media. Thus, we have to consider the
porosity in a statistical way. This can be done by a sampling process. The
sampling is carried out in an arbitrary way and different values of porosity
are obtained when different sampling sizes and positions are considered. Since
each chosen sample is within a compartment of regular shape, it has a deter-
ministic porosity value. Average of these values will tend to the true porosity
of the whole porous media, guaranteed by the so-called large number theo-
rem. In fact, we have two choices: to approximate the porosity of the whole
porous structure by the porosity of the samples chosen large enough (which is
generally difficult as explained above) or, alternatively, to take a large number
of samples.

For a porous structure represented by a spatial signal, it turns out that
porosity have a very close relationship to the autocorrelation function. This
connection is not perceptible in a deterministic case (one sample), but will be
clear when explained in the following statistical synthetic models.

2.1 A Homogeneous Model of a Single Component Porous Media

with Point-to-point Independence

For the sake of simplicity, we consider the one-dimensional case. We also
assume the homogeneous porous set F to be hosted in the unit interval and
defined as follows:

At the finest resolution, the proposed porous media F can be considered
to be composed of n equal parts [(i − 1)/n, i/n], i = 1, · · · , n of the unit
interval, where each part is associated with a binary random variable Xi

indicating the membership of the subinterval [(i − 1)/n, i/n]. We can write



4 Fahima Nekka and Jun Li

F =
⋃

i:Xi=1

[(i − 1)/n, i/n] and Xi is defined as:

P(Xi = 1) = p, P(Xi = 0) = 1 − p (2.2)

where P denotes the probability.
Suppose that any part [(i−1)/n, i/n] is chosen in a random way, we further

assume that the variables Xi are i.i.d. for all 1 ≤ i ≤ n.
Consider the normalized version I(t) of the autocorrelation function of F :

I(t) =

∫

XF (x)XF (x + t)dx
∫

XF (x)2dx
(2.3)

where XF is the indicator function of F : XF (x) =

n
∑

i=1

XiX[(i−1)/n,i/n](x) (the

value at each i/n is treated in a natural way, i.e. it can only be 0 or 1). The
normalization is applied to assure that I(0) = 1, which will facilitate our
comparisons below.

p

1 t

1
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I  (t)E

1 t

1

0

I  (t)E

(a) (b)

Fig. 1. The autocorrelation of: (a) the homogeneous model of single component
porous media with point-to-point independence; (b) the unit segment.

In this example, we have
∫

XF (x)2dx =

∑n
k=1 X2

k

n

and
∫

XF (x)XF (x + t)dx =

∑n
k=i XkXk−i+1

n

for t = (i − 1)/n, i = 1, · · · , n.
Since we have assumed a statistical definition of F , it is suitable to redefine

the autocorrelation function of F in the following way:

IE(t) =
E

∫

XF (x)XF (x + t)dx

E
∫

XF (x)2dx
(2.4)
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where E denotes the expectation.

Then, we have E

∫

XF (x)XF (x+t)dx = (1−
i − 1

n
)p2 and E

∫

XF (x)2dx =

p. On the other hand, variances of these two expressions involved in IE(t), are
of order 1/n, i.e. O(1/n), which guarantees their convergence when n is large
enough.

It is easy to see that:

IE(t) =

{

1, t = 0;
(1 − (i − 1)/n)p, t = (i − 1)/n, i = 2, · · · , n.

(2.5)

Let n go to infinity, we obtain:

IE(t) =

{

1, t = 0;
(1 − t)p, 0 < t < 1.

(2.6)

Fig.1(a) illustrates IE(t).

The porosity of F is
1

n

n
∑

i=1

Xi; statistically, it is:
1

n
E

n
∑

i=1

Xi = p.

Then p is obtained as the right limit of IE(t) at t = 0 or the slope of the
IE(t). In this way, the porosity of a set F can be related to its autocorrelation
function IE(t) by considering an immediate neighborhood of t = 0 or root
mean square slope of the autocorrelation function.

The simple case of the autocorrelation function of the segment [0, 1], a
limit case of Eq.(2.6), is illustrated in Fig.1(b). In this case, there’s no jump
from t = 0 to t = 0+, meaning that the similarity is carried out by all the
points of [0, 1] and that IE(t) smoothly decreases as t increases. However, for
p < 1, from t = 0 to t = 0+, the similarity is carried out by only p percent of
points of [0, 1], which equals to the porosity of the set, Fig.1(a).

2.2 A Homogeneous Model of Double Components Porous Media

with Point-to-point Independence

To verify the relationship between porosity and the autocorrelation function
for a more complex structure, we study another model of porous media com-
posed of two components.

Consider F as composed from 2n equal parts [
i − 1

2n
,

i

2n
], i = 1, · · · , 2n of

the unit interval, where each part is associated with a binary random variable

Xi indicating the membership of the subinterval [
i − 1

2n
,

i

2n
]. Clearly, we can

write F =
⋃

i:Xi=1

[
i − 1

2n
,

i

2n
] and Xi is defined as:

P(Xi = 1) = pj , P(Xi = 0) = 1 − pj , (2.7)

where j = 1 for i even, j = 2 for i odd, and P denotes the probability.



6 Fahima Nekka and Jun Li

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a)

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2
(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
(d)

Fig. 2. The autocorrelation of porous media where p1 = 0.7, p2 = 0.4. Theoretical
expressions: (a) IE(t), (b)IE(t)/IE,p(t); simulation results (10, 000 samples): (c)IE(t),
(d)IE(t)/IE,p(t).

We further assume that the variables Xi are independent between them,
for all 1 ≤ i ≤ 2n. Then we have E

∫

XF (x)2dx = (p1 + p2)/2, which is in fact
the statistical porosity of F , and we note p = (p1 + p2)/2. Moreover, we have:

E

∫

XF (x)XF (x + t)dx = (1 −
k

n
)(p2

1 + p2
2) (2.8)

for t =
2k

2n
, and

E

∫

XF (x)XF (x + t)dx = (1 −
2k − 1

2n
)p1p2 (2.9)

for t =
2k − 1

2n
. On the other hand, variances of these two expressions, in-

volved in IE(t), are O(1/n), which guarantees their convergence when n is
large enough. Then:

IE(t) =



















1, t = 0;

(1 −
2k

2n
)
p2
1 + p2

2

p1 + p2
, t =

2k

2n
, k = 1, · · · , n;

(1 −
2k + 1

2n
)

2p1p2

p1 + p2
, t =

2k + 1

2n
, k = 1, · · · , n.

(2.10)

Consider the line of porosity defined by:

IE,p(t) = (1 − t)p, 0 < t < 1. (2.11)

Then, for t =
2k

2n
, k = 1, · · · , n, we have: IE(t) = (1 − t)p ·

4p1p2

(p1 + p2)2
<

IE,p(t), and for t =
2k + 1

2n
, k = 1, · · · , n, we have: IE(t) = (1 − t)p ·

2(p2
1 + p2

2)

(p1 + p2)2
> IE,p(t).
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Clearly, IE(t) oscillates around IE,p(t), making the latter as its line of
average. In Fig. 2, we show the theoretical and simulation results for IE(t)
and IE(t)/IE,p(t). We observe that the oscillations of the autocorrelation curve
around its line of porosity will not vanish, reflecting the dependency between
points. Also, the simulations indicate that the part of IE(t)/IE,p(t) that can
be used should not be close to t = 1 since the divider will be too small.

2.3 A Homogeneous Model of Porous Media with Point-to-point

Correlation in Terms of Distance

A more realistic model is to suppose some relationships between the points,
i.e. a certain dependency between components. This dependency can be a
function of the distance between points, and logically, it should decrease as
the distance increases.

In this model, we consider the porous media as composed of one compo-
nent, and we will keep all notations used in Section 2.1. We also have:

E(XiXj) =

{

p, i = j;
R(i, j)p, i 6= j

(2.12)

where R(i, j) is a function of |i − j| that can be redefined as R(r), r =
|i − j| /n.

R(r) is positive and its largest value is R(0) = 1. Moreover, R(r) will
oscillate around p and converges to p when r increases and R(+∞) = p.

We have

E

∫

XF (x)2dx =
1

n

n
∑

k=1

EX2
i = p. (2.13)

and for t = (i − 1)/n,

E

∫

XF (x)XF (x + t)dx =
1

n

n
∑

k=i

E(XkXk−i+1)

= (1 − t)R(t)p. (2.14)

Then
IE(t) = (1 − t)R(t). (2.15)

Rewrite IE(t) = Rp(t)Ro(t), where Rp(t) = p(1 − t) and Ro(t) = R(t)/p.
This decomposition describes the two components that are present in the
autocorrelation function. Indeed, Rp is a straight line with slope −p and cut-
ting point p on the y-axis. This line, that we called the line of porosity in
Section 2.2, corresponds to the autocorrelation function of the point-to-point
independent homogeneous porous media. The curve Ro is the pure correla-
tion component which contains the correlation information between points. In
other terms, Ro gives the information about the average relationship between
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any two points of the set in terms of their distance. Thus, we can redefine Ro

as the pure correlation function of the set:

Ro(t) =
E

∫

XF (x)XF (x + t)dx

(1 − t)E
∫

XF (x)2dx
. (2.16)

Remark: The following autocorrelation function is commonly used for stationary
signals S:

C(t) =
E[(S(x) − m)(S(x + t) − m)]

E(S(x) − m)2
(2.17)

where m = E(S(x)) is independent of x.

However, for a spatial signal defined on a complex support, it is difficult or

even impossible to define its mean value m, when taken in the usual meaning [5].

In order to use the last mentioned definition of the autocorrelation function, some

ergodic condition on average has to be verified. To avoid this average problem, we

chose to use the general form [4]. Moreover, as shown above, the general form can

be decomposed, in a clear way, into two components that we call here the line of

porosity and the pure correlation curve.

3 Complementary Parameters to Porosity

Obviously, porosity alone is far from enough to reflect the irregular mor-
phology of micro-porous structures. Properties of porous media are highly
dependent on the morphology of the pore space as well as those of its com-
plementary part. To go one step further in the characterization process and
extract complementary parameters, various strategies have to be developed
for different degrees of complexity.

3.1 Low-complexity Texture: A Measure of the Departure from

Homogeneity

Simply organized structures are generally composed of sub-parts having a nar-
row range of size distribution. Thread-like textures are a particular case (Fig.
3, left and middle parts). In this part, we use typical thread-like structures to
show how, our newly developed analysis approach, based on the autocorre-
lation function, allows to extract pore frequency and extent, which are com-
plementary parameters to porosity. From the previous result, we know that
the LMS of the autocorrelation function of a perfectly homogeneous structure
coincides with its porosity line. This ideal homogeneous structure will serve
to measure the departure of other structures from homogeneity. Comparing
images based on this departure from homogeneity, based on the autocorre-
lation function, is more feasible than a direct pixel-by-pixel comparison. To
do so, we suggest to subtract, form the autocorrelation function, its porosity
line, which is, as stated above, its LMS slope. This allows to keep only the
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Fig. 3. Left and middle: two synthetic thread-like porous structures of same poros-
ity; Right: once porosity line cleared, the Fourier transform of the autocorrelation
functions, (a) for the left image, (b) for the middle one.

information hidden in the remaining part, IE(t) − Rp. In fact, this departure
from homogeneity can be related to the concept of lacunarity [12]. For this
remaining curve, two different approaches can be adapted. The first one is
through the variance of IE(t) − Rp, which can be defined as a new formula
for lacunarity as a departure from homogeneity, in terms of the autocorre-
lation function. This approach is not developed in this paper. Since we are
concerned, in this section, by low-complexity images, it is possible to apply
the Fourier transform to analyze the frequency components of IE(t) − Rp.

For example, for the two periodic patterns of the same porosity value:
0.4633, shown by two images on the left and middle places in Fig.3, the Fourier
transform of their corresponding IE(t)−Rp is given on the right of Fig.3. The
results on frequency f as well as on 1/f give two parameters, independent from
porosity, representing the number of threads as well as their sizes, respectively.
In fact, the Fourier transform of IE(t)−Rp gives a frequency expression of the
departure of the signal from homogeneity (Wiener-Khinchin theorem). The
main frequency component corresponds to periodic pattern once the porosity
information is dropped.

We have also processed images where two frequencies have been super-
posed. To extract the average frequency fm and the corresponding average
length 1/λm, we experimentally found that the following formula gives the
nearest values for fm compared to 1/λm. If we note by D(f) the absolute
value of Fourier transform of IE(t) − Rp, then, we have:

fm = (

∑

D(fi)f
1/2
i

∑

D(fi)
)2 (3.18)

λm = (

∑

D(fi)λ
1/2
i

∑

D(fi)
)2 (3.19)

where λi = 1/fi.
We have to stress that the above Fourier analysis method works well for

non-trivial cases, i.e. porosity is not too small or not near 1 (its complementary
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Fig. 4. Left: The matching between estimated porosity using the porosity formula
and the slope of the linear part of the autocorrelation function of images in [13],
page 118; Right: RD directly applied on the mixed fat fractals (top) and on their
autocorrelation function (bottom).

is small). For complex structures of porosity near zero, we have to use the
approaches we present below.
Remark: Relying on the theoretical proof given in Section 2, which gives a sta-

tistical meaning to porosity through autocorrelation function, we suggest to extract

images porosity using the least mean square (LMS) slope of the autocorrelation

function. This porosity line gives a statistical information on a given (deterministic)

image, which, in fact, has been generated through a random way. This statistical

meaning of porosity is more appropriate than using the porosity computed from

a single image, the latter introducing a variation in the porosity of the whole im-

ages collection. As a practical example, we use a set of porous images of decreasing

porosities to illustrate this correspondence of porosity to the LMS slopes of the au-

tocorrelation function. The images are taken from K. Zhao et al. [13], Fig. 2 on page

118, which represent blending films of porous scaffold and show decreasing porosities

in terms of the concentration of the two used polymers, PHB and PHBHHx. The

left plot in Fig. 4 reports the equivalence (matching) between the LMS slopes of the

autocorrelation of figures (a-f)in Fig. 2 in K. Zhao et al. [13] and the porosity values

calculated by the porosity formula.

3.2 Fractal-like Texture

Fat Fractals: Synthetic Porous Media

When complexity of a structure increases further while it has a positive (non-
zero) porosity, we propose a different approach to the autocorrelation function,
combining fractal tools. A typical case for those more complex structures of
positive porosity are known as fat fractals. Their main peculiarity, compared
to thin fractals, consists in a finite and non-zero Lebesgue measure of their
support. The empty holes of fat fractals have size-dependant power distri-
bution similar to porous materials [3, 14] and they have been proposed as
realistic models of micro-porous media [3], Let us recall how a 1-D regular
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fat fractal is generated. For sake of simplicity, we usually use the unit inter-
val as initiator. A regular fat fractal can be obtained through the following
simple iterative rule: from one step to the next, we just drop the open mid-
dle intervals of length ln from each of the remaining intervals. If the length
of the interval at step n − 1 is Ln−1, then this removed length is Ln−1 di-
vided by an. After n iterations, the obtained set is composed of 2n intervals of
lengths Ln and n subsets which are composed of Nn(k) = 2k−1 empty holes of
lengths lk, (k = 1, · · · , n), respectively. For a 1-D regular fat fractal, a is the
only parameter involved in its definition. It is clear that the empty holes are
symmetrically distributed in a 1-D regular fat fractal. To describe a porous
media having asymmetric features, we have to use the mixed fat fractal which,
intuitively, is a redistribution of the parts of the regular one, obtained by re-
arranging alternatively its voids and occupied intervals. We have considered
eight fat fractals having the following values for the parameter a : 3, 4, 5, 6,
8, 10, 12 and 15. The autocorrelation function of these fat fractals is a more
irregular curve, preventing thus a valuable application of the Fourier trans-
form as was the case above [15, 9]. The irregularity of those curves suggests
the utility of the fractal dimension usually used to quantify complexity. Thus,
we use the regularization dimension (RD), introduced by J. Levy-vehel and
F. Roueff [11], since it proved to be more sensitive to variations. However,
one can also raise the question of applying the RD directly to the fat fractal
instead of applying it to the autocorrelation function of the set. Comparison
of the obtained results shows that, when RD is directly applied to the sets, a
differentiation based on this dimension is less convincing compared to when
it is applied to their autocorrelation function, the right plot of Fig. 4. In fact,
RD of the autocorrelation function is a strictly increasing function of the size
of the initial hole. This difference can be explained by the fact that autocorre-
lation function has a smoothing “action” since it attenuates the irregularities
of a signal (spatial signal representing the set in this case) and produces more
uniform ones: sparse parts intersecting with themselves will still be sparse and
when intersecting with denser parts, will again produce sparse parts. Also, the
autocorrelation accumulates similarities that are dispersed all along the set.
Once the autocorrelation function is applied, The similarity amount is globally
decreasing as the translation value t increases.

Thin Fractals: Structures of Porosity Zero

As already mentioned in Section 3.1, images of neglected porosity cannot be
processed by the Fourier analysis approach that we suggested above. We here-
after propose an alternative method based on the Hausdorff measure of these
sets. In fact, typical non-trivial examples are sets having zero-Lebesgue mea-
sure, as it is the case for Cantor sets or, more generally thin fractals. For these
sets, we have to use what we previously named the Hausdorff Measure Spec-
trum Function (HMSF)[7], which involves integration according to Hausdorff
measure instead of Lebesgue measure used in the autocorrelation function,
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Eq.(2.1). In fact, we define the HMSF as follows:

IsH (t) =

∫

x∈F

XF (x)XF (x + t)dHsH (x), (3.20)

where sH is the Hausdorff dimension of the set F [16]. Fig.5 shows the HMSF
of the Cantor fractal set as well as of a geometrical multifractal set. The lat-
ter example is generated on the unit interval using two similitudes, with the
scaling factors equal to 1/2 and 1/4, on left and right extremities, respec-
tively. This two scale-Cantor set gives rise to what is called a geometrical
multifractal [17, 18]. Other typical examples can be found in [6, 7].
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Fig. 5. The HMSF of the triadic Cantor set (left) and of the considered multifractal
set (right).

Distinguishing Sets of the Same Fractal Dimension Using HMSF

The fractal dimension is used to quantify the complexity of a structure. How-
ever, there is a need to further set apart, in a quantitative way, different fractal
structures sharing the same fractal dimension. In [7, 8], we have proposed the
HMSF as a potential method to distinguish structures. By the way it is con-
structed, the HMSF contains information on two-point statistics relationship
between parts in terms of their distances. This is the reason that the HMSF
provides additional information on the organization of the structure (what
is generically called lacunarity). We proposed two different ways to exploit
the HMSF in order to distinguish between sets having the same fractal di-
mension. The first one is based on what we called the translation invariance
based method (TIBM). The second one consists in comparing the measure
values of this function for different sets at a fixed level. We call it the fixed
level based method (FLBM). The latter one is necessary only when the first
step in not enough. FLBM associates an index to sets which allows for their
differentiation as well as for evaluation of their degree of homogeneity. For geo-
metrical multifractals, peaks of the HMSF have variation of different heights.
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However, they still converge towards several level values, from which we can
extract geometrical information related to the homogeneity of the structure.
Further analysis in this direction will be done in a future publication.

Estimation of the Hausdorff Dimension Using HMSF

Our HMSF method is based on the Hausdorff measure and dimension, which
are generally hard to be determined. This a priori knowledge can be an ob-
stacle towards the application of the HMSF. We proposed a method that
allows to approximate the Hausdorff measure and the Hausdorff dimension.
The method we propose here does not rely on the exact Hausdorff measure de-
finition but substitutes for it, an appropriate approximative quantity. Indeed,
except for uniform Cantor-type sets whose HMSF can theoretically be deter-
mined [6, 7, 9, 16], it is necessary to use as a substitute, the measure spectrum
function, which can be defined in the following way: given a fractal set F , we
associate it with a family of covering sets {Fi,n}, where n = 0, 1, 2, · · · and
i ∈ In. The set i ∈ In is the set of indexes whose corresponding intervals
Fi,n are nonempty. We also let the size |Fi,n| → 0 when n goes to infinity.
If we write Fn = ∪i∈In

Fi,n, then F = ∩∞

n=1Fn. For the shift element t, the
intersection Fn ∩ (Fn + t) = ∪F ′

k,n, where F ′

k,n corresponds to the intersec-
tion parts of n-th covering sets {Fi,n} with their translates. Then, we can
define the measure spectrum function as: Is

n(t) =
∑

k |F
′

k,n|
s. This substitute

is a generic approximation of the Hausdorff measure. When dealing with a
given fractal set, one uses a coarse-graining process to practically represent
the set at different resolutions. If we use a coarse-graining whose elements are
all of size ǫn at the coarse-graining level n, we can define different quantities
to approximate the Hausdorff measure [16]. A first approximating quantity is
similar to the one involved in the box-counting dimension: Q1(n, s) = N(n)ǫs

n,
where N(n) is the number of nonempty boxes of coarse-graining elements of
size ǫn. A better approximating quantity is what we have previously named
the adaptive coverings, noted Q2 [16]. Indeed, we have successfully used this
quantity to practically evaluate the Hausdorff dimension. Q2 gathers into one
element each group of joined coarse-graining elements, and redefines in this
way another covering family (adaptive). It is usable when the condition that
the maximum length of its adaptive covering goes to zero when the coarse-
graining level n goes to infinity [16]. We believe that for advanced needs of
practical problems, this approximation exercise should be continued in or-
der to reach better estimations. This quantity shows a transition property
around its value at Hausdorff dimension sH , similar to that exhibited by the
Hausdorff measure. However, instead of relying upon the critical behaviour of
Is(0) (which is related to the Hausdorff measure of the set) when s is around
sH , we used the whole spectrum of measure function Is(t) for all values of t
varying from 0 to the total length of the set. In other words, it is a ”global”
measure phase transition criterion that we use instead of a transition criterion
around a single point. This method provides an interesting alternative to the
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usual scaling forms involved in the box-counting dimension, where convergence
problems are encountered.

Uniqueness of HMSF

The classical definition of autocorrelation function degenerates when applied
to signals having support of zero Lebesgue measure. Though the power law
expression can be used to quantify this degeneracy, the latter can have severe
consequences since the usual autocorrelation function can be dependent on the
dynamical process. In other words, one can get two different autocorrelation
functions for the same signal if there exist two different dynamical processes,
usually named cascades (also artificially obtained by coarse-graining), corre-
sponding to this same final set. If we get interested in the asymptotic or infinite
state of a physical phenomena, this degeneracy becomes a major drawback in
signal characterization. Indeed, the coarse-graining procedure is the main way
that we apply to represent a geometric set. However, this somehow artificial
way can associate various dynamical systems to the same set, implying diver-
gence in the autocorrelation power law exponent. Being concerned with this
issue, the HMSF that we proposed seems to be a suitable form to drop the
limitations of the classical autocorrelation function. Indeed, we showed that
HMSF remedies to this situation and makes the characterization of the geo-
metric information (at the static state) independent of the dynamic process
involved[10].

4 Conclusion

In this paper, we established a statistical relationship between porosity and
the autocorrelation function. This serves as a new definition, through the au-
tocorrelation function, of the homogeneity and opens a new way to measure
the departure of a given texture from its homogeneous ideal counterpart (the
homogeneous image of the same porosity as the given texture). We also pro-
pose several new ways to investigate texture of porous media. These different
approaches allow us to deal with a broad spectrum of texture complexity. In-
deed, one cannot hope for an almighty solution for all textures. For various
texture complexities, we have to develop different strategies aimed to different
purposes. The new descriptions of texture obtained through these strategies
define the various parameters which can be used for classification purposes
or as reconstruction criteria. In fact, in this work, we have combined some
largely used mathematical tools, namely the autocorrelation function and the
Fourier transform, with more recent complexity analysis tools, i.e., the HMSF
that we previously introduced along with the regularization dimension. This
combination has been put in practice using computerized numerical means.
This paper proposes some possible ways to probe the fine details in texture.
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However, for each of the proposed strategies, further work is going on theoret-
ically and numerically. Parameter definitions can indeed be refined and more
advanced algorithms have to be developed.
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