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[1] Detrended fluctuation analysis was applied to the magnetic storm index SYM-H for
the epoch 1981–2002. The objective was to determine the characteristic fractal statistical
differences, if any, between a quiet and active magnetosphere. The entire data set
comprises over 11 million points that include numerous intervals that can be classified as
quiet or active. For quiet intervals we required Kp � 1 for 10,000 consecutive minutes.
Similarly, to qualify as an active interval required Kp � 4 for 10,000 consecutive
minutes. All active intervals included magnetic storms. Detrended fluctuation analysis was
applied to each of these intervals to obtain local scaling exponents. A clear difference in
statistical behavior during quiet and active intervals is implied through analysis of the
scaling exponents for the quiet and active intervals; active intervals generally have
larger values of scaling exponents. This implies that although SYM-H appears
monofractal on shorter timescales, it is more properly described as a multifractional
Brownian motion. An overall trend toward higher scaling exponents was also discovered
for increasing magnetospheric activity, possibly implying an increase in organization with
magnetospheric activity. The overall distribution of the scaling exponents for active
intervals was Gaussian. For quiet intervals, however, it was bi-Gaussian, perhaps
indicative of different internal (magnetospheric) and external (solar wind) nonlinear
forcings.
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1. Introduction

[2] Magnetic storms, characterized by global geomag-
netic disturbances, result from the interaction between
magnetized plasma that propagates away from the Sun
and the near-Earth space plasma environment. Chapman
[1919] placed the global aspect of storms on a firm
footing when he used ground-based magnetometers to
demonstrate that for some time after great geomagnetic
disturbances and auroral activity the horizontal component
of the magnetic field around the world is significantly
reduced from its average. Storms frequently begin with a
sudden worldwide increase in the magnetic field by tens
of nanotesla that lasts several minutes to several hours,
known as the initial phase. Following the initial phase
comes the main phase, which typically lasts about a day,
and features large reductions in the horizontal component
on the order of hundreds of nanotesla. Subsequent to the
main phase the worldwide horizontal magnetic field
slowly returns to prestorm values during a recovery phase
that lasts several days. With the onset of the space age it
became apparent that ‘‘magnetic storm’’ was perhaps too
colloquial a term for what was discovered to be a
massive-scale geospace phenomenon, which could be
called a space storm.

[3] Magnetic storms characterize the most dynamic mag-
netospheric behavior. They include a rich diversity of
complex electromagnetic processes extending from the
surface of the Earth into the magnetosphere, with the
primary locus of activity being in the near-Earth geospace
environment [Baker et al., 1997; Li et al., 1997; Reeves,
1998]. These include energetic particle injection and pre-
cipitation [Reeves and Henderson, 2001; Horne and
Thorne, 2003], acceleration of relativistic electrons [Li et
al., 2001; Summers et al., 2002; Meredith et al., 2003], ring
current enhancement, decay, and composition changes
[Daglis et al., 1999; Liemohn et al., 2001; Kozyra et al.,
2002]. Recent studies on the causes of magnetic storms
have found that coronal mass ejections and extreme values
of the southward interplanetary magnetic fields appear to be
key factors in storm development [Tsurutani et al., 1992;
Gonzalez et al., 1994; Kamide et al., 1998; Richardson et
al., 2001]. Coupling and feedback between the ionosphere
and magnetosphere also plays an important role in the
initiation and development of magnetic storms, and inter-
action between these two spheres is highly nonlinear [Lui,
2002; Daglis et al., 2003, and references therein]. Storms
thus form a complex system of nonlinear phenomena
that include components of solar and terrestrial origin
[Benkevitch et al., 2002; Daglis et al., 2003].
[4] The most widely used statistical descriptor of mag-

netic storm activity is the Dst index. This index is consid-
ered to reflect variations in the intensity of the symmetric
part of the ring current that circles Earth at altitudes ranging
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from about 3 to 8 Earth radii (RE) and is related to the total
energy in the drifting particles that form the ring current. It
is calculated as an hourly index from the horizontal mag-
netic field component at four observatories, namely, Her-
manus (33.3�S, 80.3� in magnetic dipole latitude and
longitude), Kakioka (26.0�N, 206.0�), Honolulu (21.0�N,
266.4�), and San Juan (29.9�N, 3.2�). These four observa-
tories were chosen because they are close to the magnetic
equator and thus are not strongly influenced by auroral
current systems. Convolution of their magnetic variations
forms the Dst index, measured in nanotesla, which is
considered to provide a reasonable global estimate of the
variation of the horizontal field near the equator. It is
calculated once every hour.
[5] Another ground-based magnetic index called SYM-H

was developed as part of an effort to describe geomagnetic
disturbance fields at midlatitudes with high-time resolution.
It is essentially the same as the Dst index, although it uses
1-min values from a different set of stations and a slightly
different coordinate system. As such, this index also
provides an excellent measure of the large-scale behavior
of the ring current and magnetic storm dynamics (World
Data Center for Geomagnetism, Kyoto, Mid-latitude
geomagnetic indices ‘‘ASY’’ and ‘‘SYM’’ for 1999 (pro-
visional), available at http://swdcwww.kugi.kyoto-u.ac.jp/
aeasy/asy.pdf).
[6] The statistics of the magnetic storm fluctuations

observed on the ground are related to magnetospheric-
ionospheric coupling and feedback, relaxation and energi-
zation processes, and transport phenomena in space
plasmas. It is apparent from Figure 1 that the SYM-H time
series displays evidence of both long-range dependence and
intermittency. The large, intermittent negative spikes in
SYM-H correspond to intervals of intense magnetic storms.
In this paper the statistical nature of the nonlinear scaling
properties in SYM-H are examined in detail over two solar
cycles to determine the characteristic statistical differences,
if any, between magnetospheric dynamics during intervals

defined as quiet and active. The idea being pursued here, in
greater detail than before, is that statistically stable, but
dissimilar, nonlinear processes are involved in quiet and
active periods [Wanliss, 2004]. If this is the case, the
transition from quiet to active intervals should be indicated
by a change in the statistical variability which could be used
to predict the onset of active periods.
[7] In the present work, the goal was to determine

whether the nonlinear statistics of SYM-H data during quiet
intervals are similar, and whether the nonlinear statistics of
active intervals also cluster around common values. Based
on the analysis of 22 years of 1-min SYM-H data (over 11
million data points), we demonstrate that, on average,
intervals that are described as quiet and active are each
well described by a single nonlinear scaling exponent,
characteristic of fractional Brownian motion (fBm). How-
ever, on average, quiet and active intervals follow signifi-
cantly different power law scaling behaviors.
[8] The fractal analysis technique followed in this paper,

namely, detrended fluctuation analysis (DFA), is discussed
in section 2. Section 3 considers the subset of the SYM-H
time series that is selected for analysis and how we decided
which events were quiet and which were active. Results
from the data analysis are discussed in section 4. Section 5
gives our conclusions, suggesting that the SYM-H time
series may be better described as a multifractional Brownian
motion (mFBm), and discusses the implications of this
result.

2. Method of Analysis

[9] A signal that displays fBm is one that has a zero mean
and which can be expressed as the stochastic integral
[Mandelbrot and Van Ness, 1968]

Ba tð Þ ¼ 1

G aþ 1=2ð Þ

( Z0

�1

t � sð Þa�1=2� �sð Þa�1=2
h i

dW sð Þ

þ
Z t

0

t � sð Þa�1=2
dW sð Þ

)
; ð1Þ

where G is the gamma function and W is a white noise
process defined on (�1,1). Here a 2 (0,1) is the scaling
exponent. Larger values closer to 1 result from signals that
are relatively smooth, and smaller values closer to 0 are very
rough. The covariance function for the fBm signal is given
by

cov Ba sð Þ;Ba tð Þf g ¼ 1

2
jsj2a þ jtj2a � js� tj2a

n o
; ð2Þ

so that Ba(0)  0 and the variance var{Ba(t)} = t2a. This
means that for the special case a = 1/2, fBm reduces to the
well-known random walk. Signals with scaling exponents
above a = 1/2 are also called persistent, because if the data
at some point have B(ti+1) > B(ti), for example, then the
probability is >0.5 that B(ti+2) > B(ti+1). Signals with
exponents below 1/2 are called antipersistent because if
B(ti+1) > B(ti), the probability is >0.5 that B(ti+2) < B(ti+1).
Typically, fBm is nonstationary, and thus detection of the

Figure 1. (top) SYM-H time series from 1981 to 2002
fluctuating around a zero mean with large intermittent
negative perturbations. (bottom) 10,000 min of SYM-H data
from a magnetic storm during 1997 appearing to feature
long-range dependence.
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presence of memory is a delicate task. Nonstationarity
means that the statistical properties are not constant through
the signal, and traditional analysis methods, that assume
stationarity (e.g., power spectra), cannot be used. Notwith-
standing the difficulties, fBm has been observed in a variety
of fields, including hydrology [Neuman and Di Federico,
2003], geophysics [Frisch, 1997], biology [Collins and De
Luca, 1994], telecommunication networks [Taqqu et al.,
1997], and others.
[10] Figure 1 (top) shows the entire 22-year SYM-H time

series used in this study. Figure 1 (bottom) shows a small
subset of 10,000 min from the SYM-H series. Figure 1 (top)
gives evidence of intermittency, and Figure 1 (bottom) of
long-range dependence. Long-range correlations in the
SYM-H time series can be tested for in numerous ways.
A general methodology is to estimate how a fluctuation
measure, denoted here by F, scales with the size n of the
time window considered. Specific methods, such as Hurst’s
rescaled range analysis [Hurst, 1951], power spectral anal-
ysis, structure function analysis [Abramenko et al., 2002], or
detrended fluctuation analysis [Peng et al., 1995], all
essentially calculate such a fluctuation measure, although
the measure is different for each technique. Typically, F /
na, where a is the scaling exponent. For a time series that
follows a fBm the relationships between the scaling expo-
nents of the various methods are simple.
[11] Burlaga and Klein [1986] showed that in some cases

the components and magnitude of the interplanetary mag-
netic field have properties of fBm and that frequently there
are deeper symmetries in the large-scale magnetic field
strength fluctuations [Burlaga, 1991]. The scaling proper-
ties of space physics data during dynamic magnetospheric
activity were investigated by Ohtani et al. [1995]. They
found that magnetic fluctuations in the magnetotail were
well described as self-affine data whose spectrum follows a
power law. Studies of geomagnetic indices and ground-
based data have served as particularly fruitful examples of
fBm in space physics [Sharma, 1995; Consolini and Lui,

2000; Price and Newman, 2001; Wanliss and Reynolds,
2003].
[12] We will employ a DFA to the SYM-H data. Novel

ideas from statistical physics led to the development of DFA
[Peng et al., 1995]. The method is a modified root mean
squared analysis of a random walk designed specifically to
be able to deal with nonstationarities in nonlinear data and is
among the most robust of statistical techniques designed to
detect long-range correlations in time series [Taqqu et al.,
1996; Cannon et al., 1997; Blok, 2000]. DFA has been
shown to be robust to the presence of trends [Hu et al.,
2001] and nonstationary time series [Kantelhardt et al.,
2002; Chen et al., 2002].
[13] Briefly, the methodology begins by removing the

mean, B, from the time series, B(t), and then integrating

y kð Þ ¼
Xk
t¼1

B tð Þ � B
	 


: ð3Þ

[14] The new time series is then divided into boxes of
equal length, n (Figure 2). The trend, represented by a least
squares fit to the data, is removed from each box; the trend
is typically a linear, quadratic, or cubic function [Hu et al.,
2001; Vjushin et al., 2001]. In this paper we use a quadratic
function which eliminates errors due to linear trends in the
data. Box n has its abscissa denoted by yn(k). Next the trend
is removed from the integrated time series, y(k), by sub-
tracting the local trend, yn(k), in each box.
[15] For a given box size n, the characteristic size of the

fluctuations, denoted by F(n), is then calculated as the root
mean squared deviation between y(k) and its trend in each
box:

F nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

y kð Þ � yn kð Þ½ �2
vuut : ð4Þ

[16] This calculation is performed over all timescales
(box sizes). A power law scaling between F(n) and n
indicates the presence of scaling:

F nð Þ / na; ð5Þ

where the parameter a is a scaling exponent. Given a
fractional Brownian motion series, the scaling exponent a =
H, the familiar Hurst exponent [Mandelbrot and Van Ness,
1968]. If a= 0.5, the signal is white noise; a < 0.5 indicates
antipersistence, and a > 0.5 indicates a persistent time
series.

3. Observations

[17] The goal of our study was to determine whether the
nonlinear statistics of SYM-H data during quiet intervals are
significantly different than those from active intervals. In
addition, if it was found that nonlinear statistics for quiet
intervals and active intervals generally cluster around cer-
tain values, we wished to determine whether the statistics
are significantly different for quiet and active intervals. To
ensure that data selected were representative of a magneto-
spheric quiet or active state, we used SYM-H as well as the

Figure 2. 6000 min of SYM-H data. Vertical dotted lines
indicate boxes of size n = 1000, and the dashed curve
segments represent the trend estimated in each box by a
least squares fit. In this example the trend function is
linear.
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Kp index selection criteria. When SYM-H indicates signif-
icant activity, there is usually significant Kp activity also.
Since SYM-H is calculated exclusively from low- to mid-
dle-latitude magnetometer stations, and Kp includes higher-
latitude stations, quiet interval data selection based on Kp
ensures that data are selected when the entire magneto-
sphere is likely to be as close as possible to a ground state.
[18] On the other hand, during active times such as

magnetic storms, Kp is generally large, and SYM-H reaches
large negative values. However, sometimes SYM-H shows
only small activity even when Kp is large, demonstrating
dynamic activity (for example, magnetospheric substorms)
at higher-latitude regions of the magnetosphere. This does
not imply that some events classified as active are really
substorms, since substorms typically result in Dst > �30 nT
[Gonzalez et al., 1994], but the smallest value found in our
data set is �60 nT. In addition, the timescale employed
here, namely 10,000 min, ensures that more than substorms

are being observed, as the timescale of substorms are a few
hours. All of this means that for our data set, active events
are at least moderate storms, or more active. It also implies,
as is well known, that substorms are a frequent occurrence
during storms. Use of Kp to select events ensures that data
are selected when the magnetosphere is truly quiet or active
over a wide range of latitudes.
[19] To ensure that the computation of the scaling expo-

nent was robust, data subsets were selected that had 10,000
data points. For quiet intervals, we required Kp � 1 for
10,000 consecutive minutes. Similarly, to qualify as an
active interval required Kp � 4 for 10,000 consecutive
minutes. This definition of quiet and active intervals is well
supported by previous studies [e.g., Rangarajan and
Iyemori, 1997] and follows the classification system sug-
gested by Bartels [1963]. Out of the original SYM-H time
series of over 11 million data points, we were able to identify
5823 active intervals and 1580 quiet intervals that satisfied
our criteria when overlapping intervals were allowed. When
entirely independent events only were allowed, we found
76 active and 30 quiet intervals. In the text immediately
following, we discuss analysis for the events with over-
lapping data. In Figure 3 we show the mean values of Kp
for all of the selected intervals with overlapping data. The
top axis and topmost time series refers to the active intervals,
and the bottom axis and time series refers to the quiet
intervals. As shown by Rangarajan and Iyemori [1997],
the quiet intervals typically show peak occurrences during
solar minimum years. As well, we found that the period
1981–2002 is clearly rather active, with it being more rare to
find quiet intervals than active intervals [Rangarajan and
Iyemori, 1997]. Even so, since there are over 1500 quiet
intervals, this will be adequate for robust statistical compar-
ison. Figure 4 shows the corresponding histograms of the
mean Kp values. The majority of events cluster around the
limits Kp = 4 (active) and Kp = 1 (quiet).
[20] It is clear from Figure 5, which shows the

corresponding average SYM-H values for each selected
event, that most ‘‘quiet’’ events, as determined via Kp,
correspond to very small average SYM-H values as well,
with no average more negative than �30 nT. The ‘‘active’’

Figure 3. Smallest (bottom plot of 1580 data points) and
largest (top plot of 5823 data points) mean values of Kp for
each data subset, comprising 10,000 consecutive minutes,
selected for 1981–2002.

Figure 4. Histograms of the mean Kp value for the
selected (top) quiet and (bottom) active events.

Figure 5. Mean SYM-H values for (top) all quiet data
intervals and (bottom) all active intervals.

A03202 WANLISS: FRACTAL PROPERTIES OF SYM-H

4 of 12

A03202



events correspond to rather larger average values, although
there are a number of events that have averages that could
be considered on the small side. Comparison in terms of
magnetic storm categorization is useful at this point. Storms
are very sensitive to strong dawn-to-dusk electric fields,
which are the product of the southward directed interplan-
etary magnetic field and the solar wind velocity. Gosling et
al. [1991] demonstrated that storms in the intense category
are typically caused by southward magnetic fields within
higher-speed streams led by shocks, although these factors
are not sufficient or necessary for storm development
[Gonzalez et al., 1994; Kamide et al., 1998]. Table 1 shows
threshold values that are required to produce storms at an
80% occurrence level; for example, intense storms will
occur 80% of the time if BS > 10 nT for 3 hours or more.
Figure 6, which shows the minimum value of SYM-H for
each selected interval, can be understood in terms of this
categorization. These bar graphs show that all active inter-
vals exceed magnetic storm thresholds given in Table 1 and
that most (4577 events = 79%) qualify as intense storms; the
rest (1246 events = 21%) of the active events qualify as
moderate storms, with the least negative value of SYM-H =
�60 nT. No small storms are included in the active event
database.
[21] Intervals classified as quiet, in terms of Kp, are a

little more complicated, as 15 events (1%) have minimum
SYM-H values below �100 nT (Figure 6) and thus actually
qualify as intense storms! A further 157 ‘‘quiet’’ events
(10%) qualify as moderate storms, and 223 events (14%)
are small magnetic storms. This leaves a total of 1185
events (75%) that are not magnetic storms, per the classi-
fication in Table 1, and which could be considered truly
representative of a quiet magnetospheric state.
[22] As mentioned previously, in many cases the Kp

criterion was satisfied for more than 10,000 consecutive
minutes. When this happened, each interval of length
10,000 min that was used to compute a scaling exponent
was allowed to include overlapping data from other
adjacent intervals. When no overlapping data are allowed
(completely independent intervals), there are only 76 inde-

pendent active intervals and 30 independent quiet intervals.
In what follows, two individual events are considered,
followed by analysis on events with overlapping data and
finally by analysis of independent events.

4. Data Analysis

4.1. Individual Events

[23] In this section we demonstrate detailed analysis of a
quiet and an active interval. We will then calculate averages
of scaling exponents for all active and all quiet intervals. In
Figure 7 we show the SYM-H values for the quiet interval
on 12 June 1997. This event features very low, small values
of SYM-H (mean = 0.19 nT, minimum = �10 nT); the
average Kp = 0.94. The scale is very wide for comparison to
the active interval. The log-log plot of fluctuation versus
box size, calculated from DFA, is given in Figure 8. The
solid curve is the best-fit linear curve to the data (shifted).
The dotted curve, shown for reference, has a slope a= 0.50,
corresponding to a random walk. The actual fluctuations
for the quiet interval (circles) follow clear power law
scaling over �2 decades (16 � n � 1000), with scaling
exponent a = 0.52 ± 0.04, whereafter the data appear more
variable. This variability highlights one difficulty in this
analysis, namely that the low and high box-number edges
should be treated with caution. The first few points at the
low end should be disregarded because in this region the
detrending removes too much of the fluctuation. For larger
values of box size, there are too few boxes for a proper
averaging to be made, and we also disregard those values.

Figure 6. Minimum SYM-H values for (top) quiet and
(bottom) active intervals.

Table 1. Threshold for Storms at 80% Occurrence Levela

Storm Type Dst, nT BS,
b nT dT,c hours

Intense �100 10 3
Moderate �50 5 2
Small �30 3 1
aAfter Gonzalez et al. [1994].
bSouthward interplanetary magnetic field.
cLength of time when the interplanetary magnetic field has values above

the required threshold.

Figure 7. An example of SYM-H during a quiet period
selected on 12 June 1997. Scale is selected for ease of
comparison with the active period data shown in Figure 9.
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In practice, all best linear fits have thus been made for 16 �
n � 1024.
[24] Data for the active interval beginning at 2100 UT on

27 March 2001 are shown in Figure 9. This is a classic
sudden onset magnetic storm signature in SYM-H (mean =
�72.3 nT, minimum = �437 nT); the average Kp = 4.02 for
this event. Figure 10 shows the log-log plot of fluctuation
versus box size. The dotted curve shows the reference
curve, which has a= 0.50, as before. As in the quiet case,
the fluctuations for the active interval (pluses) follow a
power law scaling over two decades, with a= 0.58 ± 0.1.
[25] The fact that the scaling exponent is different for the

active and quiet interval gives some indication that their
nonlinear statistical behavior is dissimilar. Whereas the
quiet event is consistent with Brownian motion, the active
event result is quite different and is more consistent with

correlated behavior. We now turn to the analysis of multiple
events, a prerequisite for arriving at any reliable conclusions
about the significance of this apparent difference between
active and quiet intervals.

4.2. Statistics for Overlapping Intervals

[26] All in all, the number of continuous intervals that
satisfy the Kp criteria for longer than 10,000 min are 30 and
76, for quiet and active intervals, respectively. When the
selection criterion was satisfied for more than 10,000 min,
every additional minute where the Kp criterion was satisfied
allowed computation of a new scaling exponent. When
overlapping intervals are allowed, i.e., when quiet and
active intervals include data from other intervals, the
total number of active and quiet intervals is 5823 and
1580, respectively. Addition of extra intervals allows
for smaller uncertainties once averages are calculated but
raises the question of bias in the statistical results due to
oversampling.
[27] Oversampling is certainly an issue for traditional

methods which study the moments of the distribution of
measured values, e.g., averages, standard deviations, and
distribution functions. When looking at overlapping data, it
can be demonstrated that the variation of these parameters
will be smooth and will result in bias in subsequent
averages. However, in the case of this present analysis
where the scaling exponent is calculated through nontrivial
convolution of data and graphical fitting, the degree of bias
is not so obvious, although some bias must be present.
Previous work by Wanliss [2004] suggests that the scaling
exponents for SYM-H are a function of time; a = a(t). This
is not entirely surprising since the signals are obtained under
constantly varying conditions. This implies that it is not
clear a priori that allowing overlapping intervals will result
in a large skewing of the average results, as is the case when
averages are found from moments. The moments, and
distribution, of the original data are preserved in the DFA

Figure 8. Circles showing the fluctuation versus box size
for the quiet event beginning at 0400 UT on 12 June 1997.
Dotted curve has a slope of 0.5 and is shown for reference
purposes. Solid curve is the best fit linear curve to the data
(shifted) and has a slope a= 0.52 ± 0.04.

Figure 9. An example of SYM-H during an active period
selected on 27 March 2001.

Figure 10. Pluses showing the fluctuation versus box size
for the active event beginning at 2100 UT on 27 March
2001. Dotted curve has a slope of 0.5 and is shown for
reference purposes. Solid curve is the (shifted) best fit linear
curve to the data, with a slope a= 0.58 ± 0.1.
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method. Unlike the moments, the scaling exponent is
strongly dependent on the order in which the data are found.
For example, in experiments on synthetic fBm we found in
cases that even a 1% (100 data points) difference in data can
result in a 0.1 change in the measured scaling exponent.
Since ‘‘local’’ changes in scaling exponents can be observed
through DFA, it may be important to consider all intervals

to get a full view of the nonlinear characterization of SYM-
H. In fact, several studies have insisted on overlapping
intervals in order to obtain local measurements of the degree
of long-range correlations [e.g., Vandewalle and Ausloos,
1997; Muniandy et al., 2001]. Notwithstanding these con-
siderations, it will be necessary to apply the analysis to
completely independent intervals, as only this can dispel the
questions of bias raised through the use of overlapping
intervals. If significant bias results from overlapping inter-
vals, then the distribution of scaling exponents should be
quite different from the case with only independent inter-
vals. Otherwise, the distribution should be similar, although
better resolved for overlapping intervals, because there are
more data.
[28] For overlapping intervals, good discrimination be-

tween the quiet and active groups of data was achievable
through observation of the scaling exponents for all events.
Figure 11 shows a comparison of computed exponents for
quiet (dark circles) and active (light pluses) events, as a
function of mean SYM-H value for the data interval. The
quiet and active intervals cluster around different mean
values, aQ = 0.53 ± 0.04 and aA = 0.59 ± 0.04, respectively.
Figure 12 shows a similar comparison, but in terms of the
minimum SYM-H during the data interval. Figure 12 (top)
shows all data results for quiet (dark circles) and active
(light pluses) values of a. Clustering of quiet and active
events indicates that active events tend to have larger
scaling exponents. The mean values and standard deviation
error bars are shown bolded at the left of the plot. To more
clearly make the distinction between quiet and active
intervals, Figure 12 (bottom) has averaged the a values
over boxes of 20-nT width. These plots demonstrate that
there is a clear separation between the statistics for quiet and
active intervals. In answering the question of significance of
the difference of the means, we consider the entire distri-
bution of quiet and active interval scaling exponents. We
have, in this analysis, two separate distributions of scaling

Figure 11. Comparison of computed a for quiet (dark
circles) and active (light pluses), as a function of mean
SYM-H value for the data interval. Intervals allow
overlapping data. Quiet and active interval results cluster
around different mean values, aQ = 0.53 ± 0.04 and aA =
0.59 ± 0.04, respectively. Average values are indicated by
the vertical lines to the left and right sides of the plot.

Figure 12. (top) Comparison of computed a for quiet
(dark circles) and active (light pluses), as a function of
minimum SYM-H value for the data interval. Mean a
values are shown by the vertical lines to the left of the plot.
Quiet and active intervals cluster around different mean
values, aQ = 0.53 ± 0.04 and aA = 0.59 ± 0.04, respectively.
(bottom) Averaged values of a in boxes of 20-nT width
demonstrating the clear separation between the statistics for
quiet (dark circles) and active (light pluses) intervals.

Figure 13. Probability distributions of the scaling ex-
ponents for active (pluses) and quiet (circles) events on a
log scale. Results are from data that allowed overlapping
intervals. Results from quiet events that had SYM-H >
�30 nT are shown as diamonds.

A03202 WANLISS: FRACTAL PROPERTIES OF SYM-H

7 of 12

A03202



exponents (Figure 13). These distributions have different
means and overlap in their tails.
[29] It is important to note that the overlap in the standard

deviation error bars does not imply that results are statisti-
cally insignificant. The standard deviation quantifies vari-
ability but does not account for sample size. To assess
statistical significance, one must take into account sample
size and variability. Observing whether standard deviation
error bars overlap or not tells one nothing about whether the
difference in means is, or is not, statistically significant, and
other significance tests must be used. A Student’s t test
compares one variable between two groups. It is a test for
measuring the significance of a difference of means between
two distributions and is ideally suited to determine whether
the two distributions (scaling exponents from quiet and
active intervals) are from the same population. The null
hypothesis is that the scaling exponents from quiet and
active intervals are from the same distribution, and any
differences are due purely to randomness. The important
output of the t test is the value of p, which is the probability
that the difference in the means of the two distributions
being compared is due to random variation. To determine
whether these averaged scaling exponents for quiet and
active intervals were significantly different from the null
hypothesis, we applied a Student’s t test and found p <
10�5. These results imply that the difference between the
average scaling exponent computed for quiet and active
intervals is statistically significant.
[30] In Figure 13 we show the normalized probability

distribution function for the statistics computed for the 5823
active intervals and 1580 quiet intervals. Data have been
normalized for this plot so that the probabilities are
expressed as percentages. The distribution of the active
interval scaling exponents (pluses) is Gaussian, but the
quiet intervals (circles) have two populations that are best
fit as a bi-Gaussian. Since we found that the selection
criteria did result in some events being classified as quiet,
even though SYM-H values indicated the presence of a
magnetic storm, we also computed average values for
only truly quiet events: those for which Kp � 1 and for
which SYM-H > �30 nT. These comprised 1185 intervals,
and the probability is shown as the diamonds in Figure 13.
There is not much difference between this and the distribu-
tion for all quiet events. Table 2 summarizes the scaling
exponents calculated for these distributions. For compari-
son, in Table 2 we have also divided the events into subsets
that recognize the magnetic storm classification system of
Table 1, and we have indicated the scaling exponents for

these cases. For the quiet events, for which the distribution
is bi-Gaussian, we used the symbol a1 to refer to the scaling
exponent with the smaller value and a2 for the exponent of
larger value. It is evident from Table 2 that as the activity
increases, there is an increase in the value of the mean
scaling exponent.

4.3. Statistics for Independent Events

[31] As mentioned in section 4.2, it is not clear how the
overlapping intervals will skew the results of the previous
analysis, since the scaling exponents vary as a function of
time and reflect nonlinear behavior under changing con-
ditions. Some degree of bias will certainly result. In order to
validate the use of overlapping intervals, in this section it is
also necessary to consider the statistics when nonoverlap-
ping (i.e., completely independent) intervals are used. There
are a total of 76 active and 30 quiet intervals when data are
completely independent. Figure 14 shows plots of the
scaling exponents as a function of mean (top) and minimum
(bottom) SYM-H. As before, data for active intervals are
shown as pluses, and circles indicate data for quiet intervals.

Table 2. Scaling Exponents Calculated by Fitting Statistics From Active Times to a Gaussian Distribution

Function and Quiet Times to a Bi-Gaussian Distribution Functiona

Data Type N a a1 a2

Quiet intervals intense storms 15 0.49 ± 0.02 0.48 ± 0.01 0.52 ± 0.00(1)
moderate storms 157 0.54 ± 0.04 0.52 ± 0.03 0.59 ± 0.01
small storms 223 0.54 ± 0.03 0.47 ± 0.04 0.54 ± 0.02
truly quiet 1185 0.53 ± 0.04 0.49 ± 0.02 0.55 ± 0.02
all 1580 0.53 ± 0.04 0.48 ± 0.01 0.54 ± 0.03

Active intervals intense storms 4558 0.59 ± 0.04
moderate storms 1324 0.58 ± 0.04
all 5882 0.59 ± 0.04

aN, number of events; a, mean scaling exponent; a1 and a2, computed exponents for the bi-Gaussian quiet distribution
function.

Figure 14. Comparison of computed a for quiet (circles)
and active (pluses), as a function of mean and minimum
SYM-H value for the data interval. Results shown here are
from independent intervals. Quiet and active interval results
cluster around different mean values, aQ = 0.52 ± 0.04 and
aA = 0.59 ± 0.03, respectively. Average values are shown by
the vertical lines to the left side of the plot.

A03202 WANLISS: FRACTAL PROPERTIES OF SYM-H

8 of 12

A03202



We find that there is no essential difference in our con-
clusions from overlapping data, although the average values
change slightly: aQ = 0.52 ± 0.04 and aA = 0.59 ± 0.03. If
anything, the differences in the means are more pronounced
than before. Means and standard deviation error bars are
shown at the left of Figure 14 (top). As before, we applied a
Student’s t test and found p < 10�5.
[32] Because there are fewer events, the distribution for

quiet intervals is not well resolved, as is shown in Figure 15.
All distribution functions are normalized for comparison.
The quiet data are shown as circles, and active data are
shown as pluses. The active data have a well-resolved
Gaussian distribution as before, which suggests that the
bias for active intervals is not a large problem. This is
because the distribution of the scaling exponent for over-
lapping intervals is similar for independent intervals.
[33] For quiet intervals (circles), there is some evidence

for more than one peak, but the resolution is not good since
there are too few data points. In order to better resolve the
distribution for quiet intervals we relaxed the selection
criterion and considered Kp � 1.2. For this case, 90 totally
independent events are found, with an average scaling
exponent aQ = 0.54 ± 0.03. The normalized distribution is
shown as the curve with triangles in Figure 15 and recovers
the bi-Gaussian distribution as for the analysis with over-
lapping intervals. The increase in the scaling exponent with
increasing activity is again apparent, as for the analysis of
data with overlapping intervals; for Kp � 1.5, there are 230
independent events and aQ = 0.55 ± 0.03.

5. Summary and Conclusions

[34] In this paper we used detrended fluctuation analysis
to determine long-range dependence in SYM-H data. This
technique has the advantage that it is better able to deal with
nonstationarities than typical methods, such as variance
analysis. The idea of the method is to subtract possible

deterministic trends from the original time series and then
analyze the fluctuation of the detrended data. In all cases we
found that the detrended fluctuation functions were linear
over �2 decades in log-log space, and no crossover in
scaling behavior was observed. Locally, SYM-H appears
monofractal. This means that a single scaling controls the
dynamics over a wide range of scales. However, there is
clear evidence from our analysis that the scaling exponent
varies as a function of time and changes as a result of
magnetospheric dynamics. We found that there is significant
difference between the scaling exponents calculated for
quiet and active intervals.
[35] For quiet intervals, we required Kp � 1 for 10,000

consecutive minutes. Similarly, to qualify as an active
interval required Kp � 4 for 10,000 consecutive minutes.
Since ‘‘local’’ changes in scaling exponents can be observed
through DFA, it may be important to consider all intervals
(including those that include overlapping data from other
intervals) to get a full view of the nonlinear characterization
of SYM-H. For many cases the Kp criterion was satisfied
for more than 10,000 consecutive minutes. When this
happened, intervals were allowed to have overlapping data,
resulting in a large number of events. The SYM-H data set
includes over 11 million points from which we identified
5823 active intervals and 1580 quiet intervals. For over-
lapping data, the overall average for quiet intervals was aQ =
0.53 ± 0.04. For the active intervals we found aA = 0.59 ±
0.04. In order to validate the results from overlapping
intervals we also considered the statistics for nonoverlap-
ping intervals only. When no overlapping data were allowed
(completely independent intervals), we found only 76
independent active intervals and 30 independent quiet
intervals for the Kp selection criteria. For this case we
found that there was no essential difference from our
conclusions for averages from the overlapping intervals;
for independent intervals, aQ = 0.52 ± 0.04, and aA = 0.59 ±
0.03.
[36] Irregular geomagnetic fluctuations, which may be

reflected in the SYM-H index, can be generated in remote
regions of the magnetosphere. They can be the direct result
of changes in solar wind forcing, or they can be induced in
combination with internal magnetosphere-ionosphere insta-
bilities. We found that the quiet interval scaling exponents
had a bi-Gaussian distribution and are thus more complex to
understand than dynamics of the active intervals. These two
distinct components found during quiet times may be
indicative of different internal (magnetospheric) and exter-
nal (solar wind) nonlinear forcings. For example, Burlaga
and Klein [1986] reported that under some conditions the
solar wind has a � 0.5, consistent with homogeneous,
isotropic, stationary turbulence. In the fits to the quiet
interval bi-Gaussian distribution for overlapping intervals,
the lower value exponent was found to have a1 = 0.48 ±
0.01, which is consistent with this picture. On the other
hand, the higher-value quiet exponent has a2 = 0.54 ± 0.03,
which is perhaps more representative of a process that is
internal to the magnetosphere, although it is not clear what
this process might be.
[37] Ohtani et al. [1995] reported a � 0.7 for magnetic

fluctuations associated with tail current disruption. Consolini
and Lui [2000] also examined scaling properties of
magnetic fluctuations in the magnetotail. They found a

Figure 15. Probability distributions of the scaling ex-
ponents for active (pluses) and quiet (circles) events on a
log scale. Results are from data intervals that were
independent. Results from quiet events that had Kp � 1.2
are shown as triangles.
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scaling exponent a = 0.48 ± 0.02 before current disruption,
changing to a = 0.70 ± 0.02 afterward. They concluded
that the postdisruption statistics implied a persistent signal
that may be the result of reorganization during current
disruption. These results are similar to the results we have
found for SYM-H statistics. The SYM-H scaling exponents
calculated during quiet times are consistent with the predis-
ruption scenario reported by Consolini and Lui [2000].
However, we found the new result that the quiet interval
distribution has a bi-Gaussian nature. In this case the lower
value, a1, quoted in the previous paragraph, is remarkably
similar to the results for preonset reported by Consolini and
Lui [2000]. As mentioned in section 4.2, the overall average
for quiet intervals, assuming only a single Gaussian, was a =
0.53 ± 0.04, which is in accord with their results. The only
difference here is the observation of the dual bi-Gaussian
nature of the statistics. For the active intervals we found a =
0.59 ± 0.04. Although this is not the same as found for current
disruption events by the above researchers, there is some
similarity in that active events generally have larger nonlinear
statistics than the quiet events. Indeed, as magnetospheric
activity decreases, as measured in terms of SYM-H and Kp,
so do the measured scaling exponents. The only exception is
the 15 quiet events that have SYM-H < �100 nT, but these
may be disregarded as statistically insignificant to make
an impression on the larger general pattern that has been
observed.
[38] Very similar distribution functions were found for the

results for overlapping and independent intervals. The peaks
for quiet and active intervals are clearly separated, and there
is some overlap in the tails of the distributions. In order to
determine whether the difference in the means from quiet
and active intervals was significant, we applied a Student’s t
test. For results from both overlapping and independent
intervals, we found p < 10�5, which implies that the
difference between the statistics computed for quiet and
active intervals is statistically significant. The results show

that the averages for overlapping intervals and completely
independent intervals are very similar. The distribution of
nonlinear statistics for overlapping intervals is essentially
the same as for independent intervals. This suggests that the
scaling of SYM-H is the same over different locations in the
time series, even when overlapping intervals are included.
[39] In Figure 16 we have averaged scaling exponents

over the 22-year interval in this study. In Figure 16 the
averaging was performed over active and quiet events that
have overlapping intervals, although results for independent
intervals are essentially the same. Each circle and plus
represents the average of numerous scaling exponents
calculated for each one of these independent events. In
general, the quiet events feature smaller scaling exponents
than for active events of similar epoch. This is important,
because it lends support to the idea that quiet and active
intervals are different in their nonlinear statistics. This graph
also demonstrates strikingly that there is a temporal varia-
tion, although without any evidence of a dependence upon
solar cycle. The most recent solar maxima were around
approximately 2000 and 1990, and the most recent minima
were around 1996 and 1986. For example, the scaling
exponents for quiet events (circles) rises rather sharply
around 1998. The ultimate significance or cause of this
temporal variability is not clear and is not the concern of
this study. It is, however, important to note that a temporal
change of scaling exponent implies a symmetry breaking in
a system in a state of self-organized criticality (SOC). This
can occur when a system is perturbed near a critical point
[Chang, 1992]. Our results do not demonstrate SOC by any
means, but they are consistent with SOC. The difference in
scaling exponents from quiet and active intervals suggests
that the magnetosphere exists in a critical configuration.
Transition to a lower energy state, such as a storm, thus
results in more organization (larger scaling exponent) as the
excess of energy is dissipated.
[40] All the active intervals we studied can be classified

as magnetic storms. Magnetic storms could be understood
as pathological features of the magnetosphere-ionosphere
system, compared to the less active quiescent states. This
study has thus quantified how the dynamical patterns of
SYM-H fluctuations and associated scaling features change
with such perturbations. Our findings raise the possibility
that understanding SYM-H time-varying statistical altera-
tions with magnetospheric activity has potential for mag-
netic storm prediction. For quiet intervals we found that the
scaling exponents were not statistically different from 0.5.
On the other hand, for active intervals, when the magneto-
sphere is strongly driven by the solar wind fluctuations, the
average scaling exponent was significantly larger than 0.5.
Since quiet time data are more representative of internal
dynamics than active times, and since they have a � 0.5, it
suggests that whatever internal organization the system
exhibits during quiet times is relatively weak.
[41] For active intervals we found that the scaling expo-

nent is larger than 0.5, indicating greater correlation. As
well, we noted in Table 1 that there appears to be a trend
toward greater correlation, i.e., larger exponents, with
increased activity. This may be representative of the orga-
nizing power of storms.
[42] We have found a significant difference between the

scaling exponents for quiet and active intervals. This result

Figure 16. Averaged scaling exponents for quiet (circles)
and active (pluses) events as a function of time from 1981 to
2002. Averaging is performed over active and quiet events
that have overlapping intervals. That is, each circle and plus
represents the average of numerous scaling exponents
calculated for each one of these independent events.
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suggests that the SYM-H time series is inhomogeneous,
resulting in different parts of the signal having different
scaling properties. We have presented clear evidence that
the roughness of the sample path for SYM-H varies with
location. This means that a single number, a, may not
provide an adequate global description of the roughness of
the sample path. The fact that we have found significant
differences in a, between quiet and active intervals, in the
same data set, suggests that the basic dynamics of SYM-H
could be captured by a modification to fBm. Peltier and
Lévy-Véhel [1995] proposed such a scheme which they
called MFBm. A feature of MFBm is that the sample path
roughness is described by a function a(t) rather than a
single number. Multifractional Brownian motion is a gen-
eralization of fractional Brownian motion in which the
scaling exponent varies with time in the prescribed manner.
The difference between quiet and active intervals indicates
that the SYM-H time series, rather than being monofractal,
is probably weakly multifractional. This result may be used
as a predictive tool, since it may be that storm onsets are
presaged by characteristic changes in the nonlinear scaling
exponents, from values characteristic of quiet intervals to
those characteristic of active intervals.
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