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bstract

We study pointwise Hölder exponents of experimental and numerically simulated skin laser Doppler flowmetry (LDF) data that give a peripheral
iew of the cardiovascular system. The experimental signals are recorded in the forearm of young healthy subjects. The numerically simulated
DF data are computed from a model containing six nonlinear coupled oscillators reflecting six almost periodic rhythmic activities present in
xperimental LDF signals. Simulated LDF signals are for the first time generated with both linear and parametric couplings in order to represent
ardiovascular system behaviors. Moreover, we propose the use of a parametric generalised quadratic variation (GQV) based estimation method
or the estimation of the pointwise Hölder exponents. The latter identify possible multifractal characteristics of data. The GQV method is first
ested on a white noise measure and then applied on the LDF data. The results of our signal processing analysis show that experimental LDF
ignals recorded in the forearm are weakly multifractal for young healthy subjects at rest. Furthermore, our findings show that the simulated data
ave a complexity similar to the one of signal recorded in young healthy subjects. However, their pointwise Hölder exponents have differences
hat we explain. This paper provides useful information to go deeper into the modeling of LDF data, which could bring enlightenment for a better
nderstanding of the peripheral cardiovascular system.

2009 Elsevier Masson SAS. All rights reserved.
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ésumé
Nous analysons dans cet article la complexité des signaux laser Doppler qui donnent une vue périphérique du système cardiovasculaire. Pour
ela, des signaux laser Doppler expérimentaux et simulés numériquement sont étudiés. Les signaux expérimentaux sont enregistrés sur l’avant-bras
e sujets sains jeunes. Les données simulées sont générées à partir d’un modèle contenant six oscillateurs non linéaires couplés reflétant six
ctivités quasi périodiques présentes dans les signaux expérimentaux. Dans le modèle, les oscillateurs sont couplés avec deux types de couplages,

nt du système cardiovasculaire. À notre connaissance, de tels signaux n’ont
inéaires et paramétriques, afin de représenter au mieux le comporteme

ncore jamais été présentés. La complexité de tous les signaux (expérimentaux et simulés) est étudiée par l’estimation des exposants ponctuels
e Hölder. Ces derniers identifient des caractéristiques multifractales des données. Les exposants ponctuels de Hölder sont estimés à l’aide
’une méthode basée sur une variation quadratique généralisée paramétrée, préalablement testée sur une mesure de bruit blanc. Les résultats de
otre analyse montrent que les signaux laser Doppler expérimentaux enregistrés sur l’avant-bras sont faiblement multifractals pour des sujets
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ains jeunes au repos. En outre, nos constatations montrent que les données simulées reflètent une complexité similaire à celle des signaux obtenus
ur des sujets sains jeunes. Leurs exposants ponctuels de Hölder ont, cependant, des différences que nous explicitons. Cet article fournit des
nformations utiles pour aller plus loin dans la modélisation des données laser Doppler, ce qui pourrait apporter des éclaircissements pour une

eilleure compréhension du système cardiovasculaire périphérique.
2009 Elsevier Masson SAS. Tous droits réservés.
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. Introduction

Laser Doppler flowmetry (LDF) is commonly used in clinical
esearch for monitoring microvascular perfusion. LDF signals
re generated by the interaction between photons of a laser light
nd moving scatterers, mainly red blood cells. Both concen-
ration and velocity of the moving scatterers affect the LDF
erfusion estimate [1].

In this paper, we propose to analyze and compare the com-
lexity of experimental and numerically simulated LDF signals,
hich give a peripheral view of the cardiovascular system.
he experimental signals are recorded in the forearm of young
ealthy subjects. A recent work has led to the conclusion that
DF signals recorded in the forearm of young healthy subjects at

est are weakly multifractal [2]. However, it has also been shown
hat the ageing can reduce complexity of LDF signals [3]. This
nformation is important as it could help in the modeling of the
eripheral cardiovascular system: an accurate modeling should
ehave in the same way as the system it aims to reproduce. In
rder to simulate LDF signals, a set of five nonlinear oscilla-
ors coupled with linear couplings has recently been proposed
s a theoretical model [4–6]. We propose herein to numerically
imulate, for the first time, LDF signals with six nonlinear oscil-
ators (reflecting six almost periodic rhythmic activities present
n experimental LDF signals). Moreover, we propose to use a
ombination of both linear and parametric couplings (in order to
epresent cardiovascular system behaviors [6]). To analyze the
ultifractality of these simulated signals, an estimation of their

ointwise Hölder exponents is done in comparison with the ones
f experimental LDF signals. For the estimation of the Hölder
xponents, we use the parametric generalised quadratic variation
GQV) based estimation method as the latter, being applied on
icrovascular data, has proved to give interesting results [2,4].
oreover, in order to have a better interpretation of the results,

he GQV based estimation method is first used on a measure of
hite noise and on a fractional Brownian motion (fBm).
Our paper is organized as follows: we first introduce the the-

retical model of LDF signals. Then, the theory of the GQV
ethod is presented and applied on a white noise measure. We

hen apply the GQV method on simulated, experimental LDF
ata and fBm and present the results that we comment. Finally,
e end with a conclusion.

. Theoretical model of laser Doppler flowmetry signals
.1. Physiological and theoretical principles

On the time scale of minutes, six subsystems can be consid-
red to contribute to the regulation of blood flow. Thus, under

T
ω

i
h

; Multifractalité ; Oscillateur non linéaire

tationary conditions, when a healthy subject is at physical and
ental pause, six characteristic frequencies can be found in LDF

ignals [7,8]:

1.1 Hz for the heartbeats;
0.36 Hz for the respiration;
0.1 Hz for the myogenic activity;
0.04 Hz for the neurogenic activity;
0.01 Hz for the endothelial-related metabolic activity;
0.007 Hz for endothelium mechanisms, such as endothelium-
derived hyperpolarizing factor (EDHF).

The last one has recently been found [8]. The characteristic
requency values are different from subject to subject, but are
ound in the same frequency intervals for all subjects [9].

As a result of mutual couplings between the subsystems, Ref.
4] has shown that the values of the characteristic frequencies
re time-variable and that their corresponding amplitudes are
odulated. Based on these findings, some authors proposed to

imulate LDF signals with five nonlinear coupled oscillators
4–6]. To take into account the recent results [8], a sixth oscillator
as been added in our simulation. The same type of oscillator
s used for all six subsystems. Due to the fact that oscillators
re robust (characteristic frequencies are found in different part
f the systems), and nonlinear (synchronization phenomena are
bserved), the basic unit in the model is written as the Poincaré
scillator [4–6]:

˙ i = −xiqi − ωiyi (1)

˙ i = −yiqi + ωixi (2)

ith qi =
(√

x2
i + y2

i − ai

)
× αiwhere x and y are vectors of

scillators state variables. The first one (x) describes the blood
ow generated by the oscillator, and the second one (y) is used
or the flow velocity contribution of the oscillator. The index i
enotes the ith oscillator:

i = 1 for the cardiac activity;
i = 2 for the respiratory activity;
i = 3 for the myogenic activity;
i = 4 for the neurogenic activity;
i = 5 for the endothelial-related metabolic activity;
i = 6 for the endothelium mechanisms, such as EDHF.
he constant αi determines the stability, ai is the amplitude and
i is the characteristic angular frequency of the oscillator. This

s not the only possibility but one of the simplest. Since we
ave to deal with six nonlinear oscillators, it is important to
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hoose a basic oscillator as simple as possible. Introducing the
utual impact of the subsystems as couplings, the equations of

he oscillators are modified into:

˙ i = −xiqi − ωiyi + gxi (x) (3)

˙ i = −yiqi + ωixi + gyi (y) (4)

here gxi (x) and gyi (y) are coupling vectors. It has been sug-
ested that both linear and parametric couplings have to be taken
nto account [6]. That is why, for the first time, mixed couplings
linear and parametric) are introduced herein in the simulated
ignals.

For the rhythmic cardiac activity the model is then:

˙1 = −x1q1 + η2x2 − η3x3 − η4x4 + η5x5 + η6x6

− y1(ω1 + η2x2 − η3x3 − η4x4 + η5x5 + η6x6) (5)

here ηi denotes the coupling terms, i.e. the influence of the ith
scillator on the cardiac activity. Modulation phenomena can be
bserved between respiratory and cardiac activity. For example
he amplitude of the flow component resulting from the heart-
eat in the peripheral blood flow is modulated by the respiration
requency. That is why a positive influence of the respiratory
η2) is considered. The increased activity of the myogenic and
eurogenic systems results in a decrease of the cardiac activity,
hus negative coupling terms (−η3 et −η4) are chosen. Increased

etabolic activity results in an increased heart rate: a positive
ontrol loop is therefore assigned to this activity (η5 and η6).

similar equation is used for ẏ1. Moreover, adding noise in
quation (5) generate epochs of synchronization in the cardiores-
iratory synchrograms as those observed in healthy subjects.
ithout this random term, only the standard regimes of phase-

ocking, phase modulation and their interplay can be observed
6]. Based on Ref. [6], the five other subsystems in the model
re in the same form.

.2. Adjustment of the model

In the present work, the above-mentioned model is numer-
cally simulated. For this purpose, we sum the different blood
ow values (ẋi) and weight the sum by coefficients. The adjust-
ent (choice of the weight coefficients) is done from the

requency domain: the constant parameters of the model are
hosen so that the power spectrum of the simulated signal is

lose to the power spectrum of experimental LDF signals. Exper-
mental signals have been recorded on seven young healthy

en (between 20 and 36 years) with a laser Doppler flowmeter
Periflux 5000, Perimed AB, Stockholm, Sweden) and a probe
ositioned on the forearm. The frequency sample of these signals
s 20 Hz and 20,000 points have been analyzed. An experimental
nd the simulated LDF signal are shown in Fig. 1. The corre-
ponding representations in the frequency domain are shown in
ig. 2.

p
e
o
w

3

n

ig. 1. a: experimental laser Doppler flowmetry (LDF) signal recorded
n the forearm of a young healthy subject at rest (in arbitrary units);
: simulated signal based on six oscillators (0.6 × x1+0.0002 × x2+0.6 ×
3+0.2 × x4+0.6 × x5 + 0.5 × x6) with linear and parametric couplings.

. Multifractality analysis

Multifractals could be seen as a stretching of fractals. A mul-
ifractal signal is more complex than a (mono)fractal signal in
he sense that it is always invariant by translation, although the
ilatation factor needed to be able to discern the detail from the
hole signal depends on the detail being observed. The multi-

ractal analysis is so used to study signals, which have a local
egularity that can vary from one point to another. The obser-
ation of the multifractility of such a signal is utilized in order
o estimate his level of complexity. In our work, we use the
arametric GQV based estimation method to estimate Hölder
xponents of experimental and simulated LDF signals. More-
ver, in what follows the method is first applied on a measure of
hite noise.
.1. Hölder exponents

There are many ways to measure the local regularity of a sig-
al. One of them, which has both strong theoretical bases and
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Fig. 2. a: power spectrum of an experimental laser Doppler flowmetry
(LDF) signal recorded in the forearm of a young healthy subject at
rest; b: power spectrum of a simulated signal based on six oscillators
(0.6 × x1 + 0.0002 × x2 + 0.6 × x3 + 0.2 × x4 + 0.6 × x5 + 0.5 × x6) with linear
and parametric couplings.
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ysis,
〈
Ĥ

〉 = 1
N

i=0

Ĥ(ti). Ĥmax is the estimate obtained without
teady intuitive content, is the use of pointwise Hölder exponent
10]. For a positive measure represented by a signal X(t), the
ölder exponent α(t0) characterizes the strength of the singular-

ty at t = t0 [11]. When a “broad” range of exponents is found,
ignals are considered as multifractal. A “narrow” range implies
onofractality. Multifractality in a process is a mark of a higher

omplexity compared to monofractal processes.

.2. Generalised quadratic variation method

The parametric GQV based estimation method [12] is used to
stimate Hölder exponents of signals. The algorithm is the fol-

˜
(

p
)

owing: with dimension d, for a trajectory B
N

(sampled at the
/N moments, P ∈ {0, . . . , N − 1} d) of a process, the quadratic

r
w

1 (2010) 175–181

ariations are defined by:

N =
∑

p ∈ {0,...,N−1}d

⎛
⎝ ∑

ε ∈ {0,1}d
(−1)ε1+...+εd B̃

(
p + ε

N

)⎞
⎠

2

(6)

here p = (p1, ..., pd), ε = (ε1, ..., εd) and p+ε
N

=
p1+ε1

N
, . . . ,

pd+εd

N

)
.

To obtain raises of the convergence speed for estimators
ccording to the sampling step, the central limit theorem (CLT)
s used. Some authors have shown that quadratic variations of a
Bm with parameter H do not verify CLT for H > 3/4 [13]. That
s why quadratic variations have been substituted by GQV [12].
or one dimensional multifractional Brownian motion (mBm),

.e. d = 1, the GQV gives [14]:

˜
N (t) =

∑
p ∈ ṽN (t)

(
B̃

( p

Nδ

)
− 2B̃

(
p + 1

Nδ

)
+B̃

(
p + 2

Nδ

))2

(7)

here ṽN (t) =
{

p ∈ N; 0 ≤ p ≤ N-2and
∣∣∣t- p

Nδ

∣∣∣ ≤ N−γ
}

is the

eighbourhood of t. γ and δ are two parameters, which modulate
˜
N (t) such as δ − γ > 1/2 and γ ≥ δ × b with 0 < b < 1. It
as been proven in [15] that for any mBm, under the technical
ssumptions on γ and δ, one has almost surely:

imN→∞
1

2δ

(
(1 − γ) − log ṼN (t)

log N

)
= H(t) (8)

It follows a simple algorithm to estimate the Hölder exponent
(ti) of a mBm B̃, sampled at the moments i/N, i = 0, . . . , N −
calculating first ṼN (ti) for all ti = i/N then setting:

(ti) = 1

2δ

(
(1 − γ) − log ṼN (ti)

log N

)
(9)

We can rewrite (8) in the following form:

og ṼN (ti) = [
(1 − γ) − 2δH(ti)

]
log N (10)

This method shows its weakness in the case of an mBm non-
ormalised. That is why we usually use a regression on N using
he property of local autosimilarity of the mBm to get the slope
1(.) such as:

og ṼN (ti) = α1(ti) log N (11)

By identification between (10) and (11) we get [14]:

(ti) = −α1(ti) − (1 − γ)

2δ
(12)

This method adds a lot of noise. To correct the latter, an
djustment has been proposed [14]:

ˆ max reg = Ĥmax − 〈
Ĥmax

〉 + 〈
Ĥreg

〉
(13)

here 〈.〉 is used for the temporal mean, i.e. for a numerical anal-
N−1∑
egression and with N = Nmax, and Ĥreg is the estimate obtained
ith regression. Using the fact that the regression is not sensible
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o the multiplicative factor, the idea is to keep just the temporal
ean of this regression and to align the mean of Ĥmax on this

alue. Good results have been obtained with this algorithm [14].
n our work, the parametric GQV method is carried out with the
racLab v2.0 tool [16].

.3. Application of the GQV based estimation method on a
easure of white noise

We first apply the parametric GQV based estimation method
n a white noise measure as well as on its first and second order
inearly filtered versions. In the continuous time domain, a first
rder linear low-pass filter, with time constant τ and a unity
tatic gain, an input x(t) and an output y(t), has the following
nput-output differential equation:

dy

dt
= −y(t) + x(t) (14)

We sample at the temporal step Δt << τ and use the Euler
cheme for the numerical calculus of the derivative. Equation
14) becomes:

yn+1 − yn

Δt
= −yn + xn (15)

ith xn = x(nΔt) and yn = y(nΔt). We deduce from (15) a
umerical version of the first order linear low-pass filter, with
ime constant τ:

n+1 = (1 − Δt

τ
)yn + Δt

τ
xn (16)

To realize a second order linear low-pass filter, we can cascade
wo first order filters.

White noises and their first order linearly filtered versions
re known to be not differentiable (too irregular). We have to
o up till a second order linear filter to obtain differentiable
ignals [17]. Hölder exponents lower than one mean that the cor-
esponding signal is not differentiable. On the contrary, a signal
ith Hölder exponents higher than one is differentiable. These

haracteristics are therefore used herein in order to evaluate the
arametric GQV based estimation method.

The results obtained with the parametric GQV based estima-
ion method concerning a white noise realization and its filtered
ersions are qualitatively in accordance with the theory (see
ig. 3). From these first results, the parametric GQV based esti-
ation method can be applied in its present form (FracLab v2.0

ool [15]) on experimental and simulated LDF signals.

. Hölder exponents of laser Doppler flowmetry signals

We first estimate the Hölder exponents of the experimen-
al LDF signals. To eliminate side effects we only take into
ccount 18,000 Hölder exponents. For the example presented
n Fig. 4, the Hölder exponents are between 0.42 and 0.57
width of 0.15). Hölder exponents of our adjusted simulated

ignal (see Fig. 5) vary from 1.21 to 1.37 (width of 0.16). The
verage values obtained with all experimental LDF signals are
hown in Table 1 and compared to those obtained with the simu-
ated signal. Our work therefore shows that the range of Hölder

v
r
n
T

lised quadratic variation (GQV) based estimation method for (a) a white noise
easure, (b) its first order linear filtered version and (c) its second order linear
ltered version.

xponents from experimental and simulated LDF signals are

ery similar. Furthermore, we can observe that contrary to the
esults obtained with the experimental data, the Hölder expo-
ents estimated from the simulated signal are higher than one.
he simulated signal is thus differentiable whereas the LDF sig-
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Fig. 4. Histogram of Hölder exponents, obtained with the parametric generalised
quadratic variation (GQV) based estimation method for an experimental laser
Doppler flowmetry (LDF) signal recorded in the forearm of a young healthy
subject.

Fig. 5. Histogram of Hölder exponents, obtained with the parametric gener-
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Fig. 6. Histogram of Hölder exponents, obtained with the parametric generalised
q
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lised quadratic variation (GQV) based estimation method for a simulated laser
oppler flowmetry (LDF) signal based on six oscillators with linear and para-
etric couplings.

als recorded on the forearm of young healthy subjects are, on

verage, not differentiable.

Moreover, in order to understand how much complex are our
DF signals, we have compared the results obtained with a sig-

able 1
alues of the Hölder exponents estimated for laser Doppler flowmetry (LDF)
ignals recorded in the forearm of healthy subjects (average value computed over
even subjects), for a simulated signal and for a monofractal signal (fractional
rownian motion [fBm]).

ignal Minimal
value

Maximal
value

Range Mean
value

Standard
deviation

xperimental LDF signals 0.76 0.92 0.15 0.84 0.02
imulated LDF signal 1.21 1.37 0.16 1.27 0.02
Bm 0.46 0.53 0.07 0.49 0.01

m
t
D
a
v
i
t
o
(
T
r

t
t
i

uadratic variation (GQV) based estimation method for an experimental laser
oppler flowmetry (LDF) signal recorded in the forearm of an elderly (59 years
ld) healthy subject.

al having known properties (see Table 1), a fBm. The latter
s a monofractal signal. We can thus observe that LDF signals
experimental and simulated) have a range for their Hölder expo-
ents that is larger than the one obtained with an fBm. We can
herefore consider that LDF signals recorded in the forearms of
oung healthy subjects can have weak multifractal properties.
hese results confirm those obtained in a recent study [2].

. Conclusion

Our study confirms a weak multifractal behavior for periph-
ral blood flow signals recorded on the forearms of young
ealthy subjects at rest. It contributes to a quantitative assess-
ent of the complexity of the data recorded from peripheral

ocations where intricate interactions at the microcirculation
evel take place. Moreover, on the one hand, the comparison
etween the values of the Hölder exponents of simulated and
xperimental signals leads to the conclusion that the model of
ix oscillators using linear and parametric couplings is adequate
o reproduce the range of Hölder exponents observed in young
ealthy subjects. On the other hand, our results show that the
odel leads to differentiable signals contrary to the experimen-

al LDF signals recorded in the forearm of young healthy people.
ifferentiable LDF signals are observed on elderly subjects (see

n example in Fig. 6). A possible interpretation of these high
alues of Hölder exponents, proposed in [3], is a lower-quality
nformation channel with a lot of redundancy for trustworthy
ransmission of information. However, the LDF signals recorded
n elderly subjects have a narrowest range of Hölder exponents
see [3] and an example in Fig. 6) due to a loss of complexity.
herefore, this is a preliminary work since it is not able to exactly

eproduce the multifractal behavior of experimental data.

This paper provides useful information to go deeper into

he modeling of LDF data, and bring information for a bet-
er understanding of the peripheral cardiovascular system. The
mprovements, herein proposed for the model, have added com-
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lexity (see [2]), as expected, but the simulated signal obtained
as perhaps still too much redundancy information. Our results
ay therefore offer some guidelines for the construction of
ore adaptable models of LDF signals that could provide rele-

ant physiological information. Further works are now needed
n order to better understand the origin of the complexity of
DF signals (using for example methods based on the partition

unction) and to go deeper into the modeling. The observation
f the influence of some pathology impacting the microvas-
ular perfusion, like diabetes, on the multifractal behavior
f LDF signals, could also be an interesting way of investi-
ations.
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