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a b s t r a c t

This paper deals with the problem of discrete time option pricing using the multifractional
Black–Scholes model with transaction costs. Using a mean self-financing delta hedging ar-
gument in a discrete time setting, a European call option pricing formula is obtained. The
minimal price of an option under transaction costs is obtained. In addition, we show that
scaling and long range dependence have a significant impact on option pricing.
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1. Introduction

Over the last few years, the financial markets have been regarded as complex and nonlinear dynamic systems. A series of
studies have found that many financial market time series display scaling laws and long range dependence. Therefore, it has
been proposed that one should replace the Brownianmotion in the classical Black–Scholes model [1] by a process with long
range dependence. A simple modification is to introduce fractional Brownian motion (fBm) as the source of randomness.
Thus one adds one parameter, H , to model the dependence structure in the stock prices (for references to these studies see
Refs. [2–8]). However, empirical analysis of the ever-growing amount of data available from the financial markets revealed
that the fBm does not allow one to take into account erosion phenomena in the sample paths of stock price movements, for
the regularity of the fBm is the same along its whole path. This characteristic of the fBm is undesirable whenwemodel those
financial phenomena that need a time-varying Hurst exponent Ht (e.g., see Refs. [9–21] for details). To model the erosion
phenomena in stock markets, a multifractional Brownian motion (mBm), with time-varying Hurst exponent Ht = H(t) on
the real line, has been proposed by Peltier and Levy-Vehel [22].
In this paper, on the basis of the points of view of behavioral finance [23,24] and econophysics [25] and empirical findings

on the long range dependence in stock returns by Refs. [9–21], we will study the option pricing problem under transaction
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costs while the dynamics of the stock price St satisfies

St = S0eµt+σBHt (t), (1.1)
where µ, σ > 0, and S0 > 0 are constants; and BHt (t) is a standard multifractional Brownian motion with time-varying
Hurst exponent Ht ∈ (1/3, 1). We will show that the time scaling and long range dependence in return series have an
important impact on option pricing when proportional transaction costs are considered.
Leland [26] was the first who examined option replication in the presence of transaction costs in a discrete time setting.

From the point of view of Leland [26], in a model where transaction costs are incurred every time the stock or the bond is
traded, the arbitrage-free argument used by Black and Scholes [1] no longer applies. The problem is that due to the infinite
variation of the geometric Brownian motion, perfect replication incurs an infinite amount of transaction costs. Hence, he
suggested a delta hedge strategy incorporating transaction costs based on revision at a discrete number of times. Transaction
costs lead to the failure of the no-arbitrage principle and the continuous time trade in general: instead of no arbitrage, the
principle of hedge pricing – according to which the price of an option is defined as the minimum level of initial wealth
needed to hedge the option – comes to the fore.
In Section 2, by using a delta hedging strategy, initiated by Leland [26], we will deduce an option pricing formula in the

presence of transaction costs while the dynamics of the stock price St satisfies Eq. (1.1). In particular, we will analyze the
impact of scaling and long range dependence on option pricing. In Section 3, a conclusion is given.

2. An option pricing model for a multifractional economy under transaction costs

2.1. The definition and property of multifractional Brownian motion

Let us be given, on a complete probability space (Ω, F , P), a multifractional Brownian motion (WHt (t)) with Hurst
exponent Ht ∈ (0, 1) as follows [22], where we assume that P is the real world probability measure.

Definition 2.1. Let Ht = H(t) : [0,+∞) → (0, 1) be a Hölder function of exponent β > 0, i.e. for any t1, t2 ∈ [0,+∞)
such that |t1 − t2| < 1, there exists a constant c0 > 0 such that

|H(t1)− H(t2)| ≤ c0 |t1 − t2|β . (2.1)

Then

WHt (t) =
1

Γ (Ht + 1/2)

[∫ 0

−∞

((t − τ)Ht−1/2 − (−τ)Ht−1/2)dW (τ )+
∫ t

0
(t − τ)Ht−1/2dW (τ )

]
(2.2)

is called a multifractional Brownian motion (mBm), whereW (t) is a Brownian motion. Peltier and Levy [22] showed that a
mBm has continuous sample paths with probability 1.

Proposition 2.1 ([22]).With probability 1, WHt is a continuous function of t.

Proposition 2.2 ([22]). There exists a positive continuous function defined for t ≥ 0; t → σt such that

E
[
WHt+h(t + h)−WHt (t)

hHt

]
→ 0 as h→ 0, (2.3)

E
[
WHt+h(t + h)−WHt (t)

hHt

]2
→ σ 2t as h→ 0, (2.4)

and
WHt+h (t+h)−WHt (t)

hHt
→ N(0, σ 2t ) in distribution as h→ 0.

Definition 2.2 (Standard Multifractional Brownian Motion [22]). Let (WHt (t))t≥0 be a multifractional Brownian motion and
let t → Ht be its Hölder functional parameter of exponent β > 0, such that for any t ≥ 0, 0 < Ht < min(1, β). Then there
exists a unique continuous positive function t → σt such that the process BHt (t) =

WHt (t)
σt
is continuous and satisfies

Var
(
BHt+h(t + h)− BHt (t)

hHt

)
→ 1 as h→ 0. (2.5)

The process (BHt (t))t≥0 is called a standard multifractional Brownian motion.

Remark 2.1. By an argument just like that of Peltier and Levy-Vehel in Ref. [22], we know that if a Hölder function Ht
satisfies Ht ∈ (α, 1) then Propositions 2.1 and 2.2 and Eq. (2.5) still hold, where 0 < α < 1. In addition, from the dominated
convergence theorem we know that if Ht ∈ (α, 1) and Eq. (2.5) holds then

BHt+h(t + h)− BHt (t)
hHt

→ N(0, 1) in distribution as h→ 0.



X.-T. Wang / Physica A 389 (2010) 789–796 791

2.2. The pricing option for a multifractional economy under transaction costs

The groundwork of modeling the effects of transaction costs in option pricing was done by Leland [26]. He adopted the
hedging strategy of rehedging at every time step, δt . That is, every δt , the portfolio is rebalanced, whether or not this is
optimal in any sense. In the proportional transaction cost option pricing model, we follow the other usual assumptions of
the Black–Scholes model but with the following exceptions:
(i) The price St of the underlying stock at time t satisfies a multifractional Black–Scholes model

St = S0 exp(µt + σBHt (t)), (2.6)

where µ, Ht > 1
3 , σ and S0 > 0 are constants.

(ii) The portfolio is revised every δt , where δt is a finite and fixed, small time step.
(iii) Transaction costs are proportional to the value of the transaction in the underlying. Thus if υ shares are bought (υ > 0)

or sold (υ < 0) at a price St , then the transaction cost is given by k2 |υ|St in either buying or selling, where k is a constant.
The value of k will depend on the individual investor. In the multifractional Black–Scholes model where transaction
costs are incurred at every time the stock or the bond is traded, the no-arbitrage argument used by Black and Scholes
no longer applies. The problem is that due to the infinite variation of the geometric multifractional Brownian motion,
perfect replication incurs an infinite amount of transaction costs.

(iv) The hedged portfolio has an expected return equal to that from an option. This is exactly the same valuation policy as
earlier for discrete hedging without transaction costs.

(v) Traditional economics assumes that traders are rational and maximize their utility. However, if their behavior is
assumed to be bounded rational, the traders’ decisions can be explained both by their reaction to the past stock price,
according to a standard speculative behavior, and by imitation of other traders’ past decisions, according to common
evidence in social psychology. It is well known that delta hedging strategies play a central role in the theory of option
pricing. On the basis of the availability heuristic proposed by Tversky and Kahneman [27], traders are assumed to
follow, anchor, and imitate the Black–Scholes delta hedging strategy to price an option. In this case, the delta hedging
argument is a partial and imperfect hedging strategy, which does not eliminate all of the risk. However, as mentioned
in the paper [25], in most models of stock fluctuations, except for very special cases, risk in option trading cannot be
eliminated and strict arbitrage opportunities do not exist, whatever the price of the option. That the risk cannot be
eliminated is furthermore the fundamental reason for the very existence of option markets.

Let C = C(t, St) be the value of a European call on the above underlying stock at time t with expiration date T and
exercise price X , and the boundary conditions

C(T , ST ) = (ST − X)+, C(t, 0) = 0, C(t, St)→ St as St →+∞.
In addition, we assume that the riskless bond price dynamics satisfies

dD(t) = rD(t)dt (2.7)
where r is a constant.
Consider a replicating portfolio with X1(t) = X1(t, St) units of underlying asset and X2(t) units of the riskless bond. The

value of the portfolio at current time t is
Πt = X1(t)St + X2(t)Dt . (2.8)

Next consider the changes in St andΠt over the discrete time interval δt . After time interval δt , the change in the value of
the underlying asset is

δSt = St
[
eµδt+σδBHt (t) − 1

]
. (2.9)

Since the current stock price St is a given constant and δt is small enough, from Remark 2.1 we get that

E[δSt ] = St

[
eµδt+

σ2
2 E(δBHt (t))

2
− 1

]
≈ St

[
µδt +

σ 2

2
(δt)2Ht + O((δt + (δt)2Ht )2)

]
, (2.10)

E
[
(δSt)2

]
= S2t

[
e2µδt+2σ

2E(δBHt (t))
2
− 2eµδt+

σ2
2 E(δBHt (t))

2
+ 1

]
≈ S2t

[
σ 2(δt)2Ht + O((δt + (δt)2Ht )2)

]
, (2.11)

E
[
(δSt)4

]
= S4t

[
4∑
j=0

4!
j! (4− j)!

(−1)4−j E
(
ejµδt+jσδBHt (t)

)]

≈ S4t

[
4∑
j=0

4!
j! (4− j)!

(−1)4−j ejµδt+
j2σ2
2 (δt)2Ht

]
= O((δt)4Ht ), (2.12)
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and

E
[
(δSt)6

]
= S6t

[
6∑
j=0

6!
j!(6− j)!

(−1)6−jE(ejµδt+jσδBHt (t))

]

= S6t

[
6∑
j=0

6!
j!(6− j)!

(−1)6−jejµδt+
j2σ2
2 E(δBHt (t))

2

]
= O((δt)6Ht ). (2.13)

The change in the value of the portfolio is

δΠt = X1(t)δSt + X2(t)δDt −
k
2
|δX1(t)| St , (2.14)

where δDt is the change in the riskless bond price, δX1(t) is the change in the number of units of asset held in the portfolio.
Since the time step and the asset price movement are both small, from Taylor’s theorem we have

δDt = rDtδt + O((δt)2), (2.15)

δC(t, St) =
∂C(t, St)
∂t

δt +
∂C(t, St)
∂St

δSt +
1
2
∂2C(t, St)
∂S2t

(δSt)2

+
1
2
∂2C(t, St)
∂t2

(δt)2 +
∂2C(t, St)
∂t∂St

(δt)(δSt)+ G(δt),

where

G (δt) =
1
6

[
∂3C(t̄, S̄)
∂ t̄3

(δt)3 + 3
∂3C(t̄, S̄)
∂ t̄2∂ S̄

(δt)2 (δSt)+ 3
∂3C(t̄, S̄)
∂ t̄∂ S̄2

(δt) (δSt)2 +
∂3C(t̄, S̄)
∂ S̄3

(δSt)3
]
,

t̄ = t + θ1δt, S̄ = St + θ1 (δSt) , θ1 = θ1 (t, δt, ω) , ω ∈ Ω , and 0 < θ1 < 1.
Note that since financial data are discrete in a real world we don’t consider using ‘‘Ito’s formula’’. The classical Ito formula

only holds in a continuous time case.
Since the current stock price St is given, ∂

3C(t,St )
∂t j∂S3−jt

is also given (j = 0, 1, 2, 3). However, there exist long time correlations

between ∂3C(t̄,S̄)
∂ t̄ j∂ S̄3−j

and δSt (j = 0, 1, 2, 3).
Assume that there exists a constantM > 0 such that

E
(
∂3C(t̄, S̄)
∂ t̄ j∂ S̄3−j

)2
< M2 (j = 0, 1, 2, 3) .

Since the current stock price St is given, from Eqs. (2.11)–(2.13) we have

|E [G (δt)]| ≤ E |G (δt)| <
3∑
j=0

E
∣∣∣∣∂3C(t̄, S̄)∂ t̄ j∂ S̄3−j

(δt)j (δSt)3−j
∣∣∣∣

≤

3∑
j=0

(
E
(
∂3C(t̄, S̄)
∂ t̄ j∂ S̄3−j

)2) 12 (
E (δSt)6−2j

) 1
2 (δt)j

<

3∑
j=0

M (δt)j
[
E (δSt)6−2j

] 1
2

= O
(
(δt)3Ht

)
, (2.16)

and

E [δC(t, St)] ≈
(
∂C(t, St)
∂t

+ µSt
∂C(t, St)
∂St

)
δt +

σ 2

2
S2t (δt)

2Ht ∂
2C(t, St)
∂S2t

+
σ 2

2
(δt)2Ht St

∂C(t, St)
∂St

+ E [G (δt)]+ O
((
δt + (δt)2Ht

)2)
. (2.17)

Like for Eq. (2.17), from Taylor’s theorem we know that there exists a constantM1 > 0 such that

δX1(t, St) =
∂X1(t, St)
∂St

δSt +
∂X1(t, St)

∂t
δt +

1
2
∂2X1(t, St)
∂S2t

(δSt)2

+
1
2
∂2X1(t, St)

∂t2
(δt)2 +

∂2X1(t, St)
∂t∂St

(δt) (δSt)+ G1 (δt) , (2.18)
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where

E |G1 (δt)| <
3∑
j=0

M1 (δt)j
[
E (δSt)6−2j

] 1
2 ≈ O

(
(δt)3Ht

)
. (2.19)

Let

G2(δt) =
∂X1(t, St)

∂t
δt +

1
2
∂2X1(t, St)
∂S2t

(δSt)2 +
1
2
∂2X1(t, St)

∂t2
(δt)2 +

∂2X1(t, St)
∂t∂St

(δt) (δSt) . (2.20)

From Eqs. (2.10) and (2.11), we know that

E |G2 (δt)| = O (δt) . (2.21)

Thus

δX1(t, St) =
∂X1(t, St)
∂St

δSt + G1(δt)+ G2(δt). (2.22)

On the other hand from Taylor’s theorem we have

δSt = σ StδBHt (t)+ µStδt +
St
2
eθ(µδt+σδBHt (t))

(
µδt + σδBHt (t)

)2
,

where θ = θ (t, δt, ω), ω ∈ Ω , and 0 < θ < 1.
Let G3(δt) = µStδt + St

2 e
θ(µδt+σδBHt (t))

(
µδt + σδBHt (t)

)2.
Then

δSt = σ StδBHt (t)+ G3 (δt) , (2.23)

and

E |G3(δt)| ≤ |µ| Stδt +
St
2

(
E
(
e2|µδt+σδBHt (t)|

)) 1
2
(
E
(
µδt + σδBHt (t)

)4) 12
= O (δt) . (2.24)

Hence from Eqs. (2.18)–(2.24) we have

δX1(t, St) = σ St
∂X1(t, St)
∂St

δBHt (t)+
∂X1(t, St)
∂St

G3 (δt)+ G1 (δt)+ G2 (δt) . (2.25)

So

E |δX1(t, St)| ≤ σ St

∣∣∣∣∂X1(t, St)∂St

∣∣∣∣ E ∣∣δBHt (t)∣∣+ E ∣∣∣∣∂X1(t, St)∂St
G3 (δt)

∣∣∣∣+ E |G1 (δt)| + E |G2 (δt)| , (2.26)

and

E |δX1(t, St)| ≥ σ St

∣∣∣∣∂X1(t, St)∂St

∣∣∣∣ E ∣∣δBHt (t)∣∣− E ∣∣∣∣∂X1(t, St)∂St
G3 (δt)

∣∣∣∣− E |G1 (δt)| − E |G2 (δt)| . (2.27)

From Eqs. (2.19), (2.21), (2.24), (2.26) and (2.27), we obtain that

lim
δt→0

E |δX1(t, St)|

(δt)Ht
= σ St

√
2
π

∣∣∣∣∂X1(t, St)∂St

∣∣∣∣ .
Therefore

E |δX1(t, St)| ≈ σ St

√
2
π

∣∣∣∣∂X1(t, St)∂St

∣∣∣∣ (δt)Ht . (2.28)

Let C = C(t, St) be replicated by the portfolioΠt . The value of the option must equal the value of the replicating portfolio
Πt to reduce (but not to avoid) arbitrage opportunities and be consistent with economic equilibrium.
Therefore

C(t, St) = X1(t)St + X2(t)Dt . (2.29)

From the practical point of view, we assume that trading occurs at t and t + δt , but not in between. That means that the
current stock price St and the number of shares given by the delta hedging strategy are held constant over the rebalancing
interval [t, t + δt).
Since the current stock price St is given, we know that C(t, St), ∂C(t,St )∂t , ∂C(t,St )

∂St
and ∂C2(t,St )

∂S2t
are constants, but different.
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Thus, by the above assumptions (iv) and (v), X1 (t) = ∂C(t,St )
∂St

, Eqs. (2.10), (2.14), (2.16), (2.17), (2.19), (2.28) and (2.29),
we set

E [δΠt − δCt ] =
(
rC(t, St)−

∂C(t, St)
∂t

− rSt
∂C(t, St)
∂St

−
σ 2

2
S2t (δt)

2Ht−1 ∂
2C(t, St)
∂S2t

)
δt

−
σk
2
S2t

∣∣∣∣∂2C(t, St)∂S2t

∣∣∣∣
√
2
π
(δt)Ht − E [G (δt)]− O

((
δt + (δt)2Ht

)2)
= 0, (2.30)

which is a mean self-financing delta hedging strategy in a discrete time setting.
So from Eqs. (2.16) and (2.30) we have

rC =
∂C
∂t
+ rSt

∂C
∂St
+
σ 2

2
S2t (δt)

2Ht−1 ∂
2C
∂S2t
+
σk
2
S2t

√
2
π
(δt)Ht−1

∣∣∣∣∂2C∂S2t
∣∣∣∣ . (2.31)

Let

Le(Ht) =
k

σ (δt)1−Ht

√
2
π
, (2.32)

which is called multifractional Leland number.
From Eq. (2.31) we have

∂C
∂t
+ rSt

∂C
∂St
+
σ 2

2
S2t (δt)

2Ht−1 ∂
2C
∂S2t
+
σ 2

2
S2t

∣∣∣∣∂2C∂S2t
∣∣∣∣ Le(Ht)− rC = 0. (2.33)

In particular, if Ht = 1
2 , from Eq. (2.33) we have

∂C
∂t
+ rSt

∂C
∂St
+
σ 2

2
S2t
∂2C
∂S2t
+
σ 2

2
S2t

∣∣∣∣∂2C∂S2t
∣∣∣∣ Le(12

)
− rC = 0,

which is called Leland’s equation for option pricing, and Le
( 1
2

)
is called the Leland number.

Note that the additional term σ 2

2 S
2
t

∣∣∣ ∂2C
∂S2t

∣∣∣ Le(Ht) is nonlinear, except when Γ = ∂2C
∂S2t
does not change sign for all St . Since

Γ represents the degree of mishedging of the portfolio, it is not surprising to observe that Γ is involved in the transaction
cost term. We may rewrite Eq. (2.33) in a form which resembles the Black–Scholes equation:

∂C
∂t
+ rSt

∂C
∂St
+
σ̃ 2

2
S2t
∂2C
∂S2t
− rC = 0, (2.34)

where the modified volatility is given by

σ̃ = σ
[
(δt)2Ht−1 + Le(Ht)sign(Γ )

] 1
2 . (2.35)

If σ̃ 2 becomes negative, Eq. (2.35) becomes mathematically ill-posed. This occurs when Γ < 0 and Le(Ht) > (δt)2Ht−1.
However, it is known that Γ is always positive for the simple European call and put options in the absence of transaction
costs. If we postulate the same sign behavior for Γ in the presence of transaction costs, then

σ̃ 2 = σ 2
[
(δt)2Ht−1 + Le(Ht)

]
> σ 2 (δt)2Ht−1 > 0. (2.36)

Now, Eq. (2.34) becomes linear under such assumptions so the Black–Scholes formulas become applicable except that the
modified volatility σ̃ should be used as the volatility parameter.
Moreover, from Eq. (2.36) we obtain

C(t, St) = StN(d1)− Xe−r(T−t)N(d2),

where

d1 =
ln (St/X)+ (r +

σ̃ 2t
2 )(T − t)

σ̃t
√
T − t

, d2 = d1 − σ̃t
√
T − t,

σ̃ 2t =

∫ T
t σ̃

2dτ
T − t

, σ̃ 2 = σ 2
(
(δt)2Hτ−1 + Le (Hτ )

)
, (2.37)

and N(·) is the value of the cumulative normal density function.
Eq. (2.37) displays that the implicit volatility σ̃t varies with respect to t even if the volatility σ is a constant.
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Furthermore, if Ht = 1
2 , and k = 0, from (2.34) we have

∂C
∂t
+ rSt

∂C
∂St
+
σ 2

2
S2t
∂2C
∂S2t
− rC = 0,

which is the Black–Scholes equation.
In particular, since k

σ
<
√
π
2 often holds (for example: σ = 0.3, k = 0.025), from Eq. (2.36) we have

σ̃ 2

σ 2
= (δt)2Ht−1 +

(
k
σ

√
2
π

)
1

(δt)1−Ht
≥ 2

(
2
π

) 1
4
√
k
σ
(δt)

3
2Ht−1, where Ht >

1
2
.

The minimal ‘‘volatility’’ σ̃min is σ
√
2
( 2
π

) 1
2−

1
4Ht
( k
σ

)1− 1
2Ht , as δt =

( 2
π

) 1
2Ht
( k
σ

) 1
Ht , and min σ̃ 2t =

∫ T
t σ̃

2
mindτ
T−t .

Thus the minimal price of an option under transaction costs is represented as Cmin(t, St) with σ̃min in Eq. (2.36), where

σ̃min = σ
√
2
( 2
π

) 1
2−

1
4Ht
( k
σ

)1− 1
2Ht varies with respect to time t .

Furthermore, the option rehedging time interval for traders is δt =
( 2
π

) 1
2Ht
( k
σ

) 1
Ht , which varies with respect to time t .

The minimal price Cmin(t, St) can be used as the actual price of an option.
On the other hand, we have

σ̃min = σ
√
2
(
2
π

) 1
2−

1
4Ht
(
k
σ

)1− 1
2Ht
→
√
2σ as Ht →

(
1
2

)+
, (2.38)

and δt =
(
2
π

) 1
2Ht
(
k
σ

) 1
Ht
→
2
π

(
k
σ

)2
as Ht →

(
1
2

)+
. (2.39)

In paper [28], Lux and Marchesi have shown that Hurst exponent Ht = 0.51 ± 0.004 in some cases; therefore Eqs. (2.38)
and (2.39) have a practical application in option pricing. For example: if Ht → 0.5+, k = 1% and σ = 10%, then σ̃min →

√
2
10 ,

and δt → 0.02
π
; and if Ht → 0.5+, k = 0.1% and σ = 10%, then σ̃min →

√
2
10 , but δt →

2
π
× 10−4.

In the following, we investigate the impact of scaling and long range dependence on option pricing. It is well known that
Mantegna and Stanley [29,30] introduced themethod of scaling invariance from complex science into economic systems for
the first time. Since then, a lot of research on scaling laws in finance has begun. IfHt = 1

2 and k = 0, from Eq. (2.36) we know
that σ̃ 2 = σ 2 (δt)2Ht−1 = σ 2, which shows that fractal scaling δt has no impact on option pricing if a mean self-financing
delta hedging strategy is applied in a discrete time setting. In particular, from Eq. (2.38) we know that σ̃min →

√
2σ (as

Ht → 1
2 ) is scaling invariant with respect to parameter k. On the other hand, if Ht >

1
3 and k→ 0, from Eq. (2.36) we know

that σ̃ 2 → σ 2 (δt)2Ht−1, which displays that the fractal scaling δt has a significant impact on option pricing. For k = 0 and
δt → 0, it is interesting that σ̃ 2 → σ 2 (δt)2Ht−1 → 0 if Ht > 1

2 and σ̃
2
→ σ 2 (δt)2Ht−1 →∞ if Ht ∈

( 1
3 ,
1
2

)
, which shows

that Ht = 1
2 is a critical point. Furthermore, for k 6= 0, from Eq. (2.36) we know that option pricing is scaling dependent in

general.

Remark 2.2. Leland’s delta hedging argument is an imperfect hedging strategy. In fact, even in the absence of transaction
costs, discrete time rebalancing does not lead to perfect hedging, but nevertheless, imperfect hedging strategies have become
a standard vehicle for evaluating derivatives in practice. Rehedging will reduce, but not eliminate, risk, but at a cost: we can
no longer appeal to ‘‘no arbitrage’’. The hedge strategy of Leland is not optimal in the sense of perfect hedging, but from the
point of view of Simon, individuals are governed by bounded rationality and they look for a satisfying result rather than the
optimal one [31]. Therefore, our results are economically meaningful.

Remark 2.3. Ayache and Levy-Véhel [17] analyzed the log of the Nikkei 225 index during the period 01/01/1980 to
05/11/2000. They discovered that most values of the Hurst exponent Ht for that period are between 0.2 and 0.8. Muniandy
and Lim [12] found that the daily lows of the US Dow Jones Industrial Average Stock Index exhibit local self-similarity with
time-varying Hurst exponents that increase from roughly H ≈ 0.5 to H ≈ 0.9 during the period of 3 January 1995 until
31 May 2000. Tabak and Cajueiro [13] discovered that interest rates with maturities between 6 and 24 months present
increasing Hurst exponents from 0.425 to 0.575 and that interest rates with maturities between 7 and 20 years present
monotonically increasing Hurst exponents, from 0.525 to 0.60, for daily observations on Japanese interest rates over the
period from July 10, 1992, to July 7, 2004. The analyses above are interesting and original, which show that estimating
the Hurst regularity on the basis of a modeling with mBm yields novel insights into the data. Furthermore, Cajueiro and
Tabak [18–21] have studied both developed and emerging stock markets and have presented a variety of results. They
have made tests for time-varying long range dependence, which is known as a sign of multifractality, and suggested that
there exists long range dependence in both mean and volatility of stock returns for a variety of countries. Their studies
are important for two main reasons. Firstly, describing precisely the dynamics of the asset price is crucial for asset pricing.
Secondly, evidence of long range dependence in asset returns and volatility has important implications for both portfolio
and risk management.
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Remark 2.4. From Ref. [32] we know that Eq. (2.37) is a formula for the long call price.

3. Conclusion

Without using an arbitrage argument, in this paper we obtain a European call option pricing formula with transaction
costs for the multifractional Black–Scholes model with time-varying Hurst exponent Ht ∈

( 1
3 , 1

)
. It has been shown that

the time scaling δt and Hurst exponent Ht play an important role in option pricing with transaction costs. In particular, for
Ht > 1

2 theminimal price of an option under transaction costs is obtained, which can be used as the actual price of an option.
In addition, we also display that the implicit volatility σ̃t varies with respect to time t even if the volatility σ is a constant

and that the option rehedging time interval δt =
( 2
π

) 1
2Ht
( k
σ

) 1
Ht varies with respect to time t .
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