mBm-Biblio-Signal processing
2D shape classification using multifractional brownian motion.
M. Bicego, A. Trudda
Lecture Notes in Computer Science, vol. 5342, pp 906-916, 2010
Synthesis of multifractional Gaussian noises based on variable-order fractional operators
Hu Sheng, Hongguang Sun, Yangquan Chen, Tianshuang Qiu
Signal Processing, Volume 91 Issue 7, July, 2011
http://dl.acm.org/citation.cfm?id=1951066
Local fractal and multifractal features for volumic texture characterization
Lopes, R., Dubois, P., Bhouri, I., Bedoui, M.H., Maouche, S. ,Betrouni, N.,
Pattern Recognition, 44 (8), p.1690-1697, Aug 2011
http://www.sciencedirect.com/science/article/pii/S003132031100080X
Wavelet-Based Synthesis of a Multifractional Process
Wang, Zhao-rui; Lü, Shan-wei; Nakamura, Taketsune
Image and Signal Processing, 2008. CISP '08. Congress, 27-30 May 2008 , p331-334
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4566671
Poisson random balls: self-similarity and X-ray images
Hermine Biermé and Anne Estrade
Adv. in Appl. Probab. Volume 38, Number 4 (2006), 853-87
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aap/1165414582
2D wavelet-based spectra with applications
Nicolis, Orietta, Ramírez-Cobo, Pepa, Vidakovic, Brani,
Computational Statistics & Data Analysis, 55 (1), p.738-751, Jan 2011
http://www.sciencedirect.com/science/article/pii/S0167947310002653
Fractal Approaches in Signal Processing
Jacques
Lévy Véhel
Fractals, 3(4), 755-775, 1995
Simulation of multifractional Brownian motion
Grace Chan, Andrew T. A. Wood
Proceedings in Computational Statistics, 233-238, 1998
Computational Methods for Hidden Markov Tree Models
An Application to Wavelet Trees
Jean-Baptiste Durand, Paulo Goncalves, Yann Guedon
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1323262
The Estimation of Hölderian Regularity using Genetic Programming
Leonardo Trujillo, Pierrick Legrand, Jacques Lévy Véhel
Genetic and Evolutionary Computation Conference (GECCO 2010), 861-868, 2010Béatrice Pesquet-Popescu, Jacques Lévy Véhel
IEEE on Signal Processing Magazine, 19(5), 68-62, 2002http://hal.inria.fr/inria-00581030_v1/
A Flexible Noise Model For Designing Maps
Sebastien Deguy and Albert Benassi
Vision, Modeling, and Visualization, Stuttgart, 21–23 Nov., 2001.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1836
Evolving estimators of the pointwise Hölder exponent with Genetic Programming
Leonardo Trujillo, Pierrick Legrand, Gustavo Olague and Jacques Lévy Véhel
Information Sciences, Vol. 209, pp.61-79, 2012
http://www.sciencedirect.com/science/article/pii/S0020025512003386
Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise
Ming Li, Wei Zhao
Physica A: Statistical Mechanics and its Applications, Vol. 391(24), pp. 6268-6278, 2012
http://www.sciencedirect.com/science/article/pii/S0378437112007121
Multifractional Processes
Hu Sheng, YangQuan Chen, TianShuang Qiu
Fractional Processes and Fractional-Order Signal Processing
Signals and Communication Technology, Part 2, pp.77-92, 2012
http://www.springerlink.com/content/x310r70172962473/
Synthesis algorithm of multifractional Brownian motion with wavelet
Wang Zhaorui, Lü Shanwei, Nakamura Taketsune
Journal of Beijing University of Aeronautics, Vol. 33(12), pp.1417-1419, 2007
http://bhxb.buaa.edu.cn//EN/Y2007/V33/I12/1417
The time-singularity multifractal spectrum distribution
Gang Xiong, Shuning Zhang and Qiang Liu
Physica A: Statistical Mechanics and its Applications, Vol. 391(20), pp. 4727–4739, 2012
http://www.sciencedirect.com/science/article/pii/S0378437112003974
The fractal energy measurement and the singularity energy spectrum analysis
Gang Xiong, Shuning Zhang, Xiaoniu Yang
Physica A: Statistical Mechanics and its Applications, Vol. 391(24), pp.6347-6361, 2012
http://www.sciencedirect.com/science/article/pii/S037843711200725X