mBm-Biblio-Statistics
Regularity and identification of Generalized Multifractional Gaussian Processes
Antoine Ayache, Albert Benassi, Serge Cohen, Jacques Lévy Véhel
Lecture Notes in Mathematics 1857 (2004) 290-312
http://hal.archives-ouvertes.fr/index.php?halsid=925j51tvkjuc5n3li3iranals2&view_this_doc=inria-00576446&version=1
Uniform Hölder exponent of a stationary increments Gaussian process: Estimation starting from average values
Peng, Qidi,
Statistics & Probability Letters, 81 (8), p.1326-1335, Aug 2011
http://www.sciencedirect.com/science/article/pii/S0167715211001271
Measuring the roughness of random paths by increment ratios
Jean-Marc Bardet and Donatas Surgailis
Bernoulli Volume 17, Number 2 (2011), 749-780
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bj/1302009246
Identification of multifractional Brownian motion
Jean-Francois Coeurjolly
Bernoulli 11(6), 2005, 987-1008
http://www.jstor.org/pss/25464776
On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion
Antoine Ayache and Jacques Lévy Véhel
Stochastic processes and their applications, 2004, vol. 111, issue 1, pages 119-156
http://econpapers.repec.org/article/eeespapps/v_3a111_3ay_3a2004_3ai_3a1_3ap_3a119-156.htm
Identification of the Hurst Index of a Step Fractional Brownian Motion
Benassi A., Bertrand P., Cohen S., Istas J
Statistical Inference for Stochastic Processes, 3(1-2),101-111, 2000http://www.ingentaconnect.com/content/klu/sisp/2000/00000003/F0020001/00272346
A central limit theorem for the generalized quadratic variation of the step fractional Brownian motion
Antoine Ayache, Pierre Bertrand, Jacques Lévy Véhel
http://ideas.repec.org/a/spr/sistpr/v10y2007i1p1-27.html
Identifying the multifractional function of a Gaussian process
Albert Benassi , Serge Cohen , Jacques Istas
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.3203
Local estimation of the Hurst index of multifractional Brownian motion by Increment Ratio Statistic method
P. Bertrand, M. Fhima, A. Guillin,
To appear in ESAIM PS, 2011http://arxiv.org/abs/1010.4849
Tracking performance of Hurst Estimators for multifractional Gaussian processes
Hu Sheng, YangQuan Chen, TianShuang Qiu
Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications, 2010 http://mechatronics.ece.usu.edu/yqchen/paper/10/Tracking%20Performance%20of%20Hurst%20Estimators%20for%20Multifractional%20Gaussian%20Processes.pdf
Fast change point analysis on the Hurst index of piecewise fractional Brownian motion
P. R. Bertrand, M. Fhima & A. Guillin,
Proceeding of the 43ème Journées de Statistiques, Tunis (2011).
Fractional Order Estimation Schemes for Fractional and Integer Order
Systems with Constant and Variable Fractional Order Colored Noise
D. Sierociuk, P. Ziubinski
Circuits, Systems, and Signal Processing, 2014,DOI10.1007/s00034-014-9835-0